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Preface

“Everything happens to everybody sooner or later if there is time enough” - George
Bernard Shaw

“…but in this world nothing can be said to be certain, except death and taxes.” -
Benjamin Franklin

A logical consequence of Bernard Shaw’s quote is that if there is time enough, then ev-
erybody will have experienced a given event at some point. This is one of the central
assumptions to survival analysis (specifically to single-event analysis, but we’ll get to that
later). As nothing can be certain (except death and taxes), machine learning can be used
to predict the probability people will experience the event and when. This is exactly the
problem that this book tackles.

With immortality only being a theoretical concept, there is never ‘time enough’, hence
survival analysis assumes that the event of interest is guaranteed to occur within an object’s
lifetime. This event could be a patient entering remission after a cancer diagnosis, the
lifetime of a lightbulb after manufacturing, the time taken to finish a race, or any other
event that is observed over time. Survival analysis differs from other fields of Statistics in
that uncertainty is explicit encoded in the survival problem; this uncertainty is known as
‘censoring’. For example, say a model is being built to predict when a marathon runner will
finish a race and to learn this information the model is fed data from every marathon over
the past five years. Across this period, there will be many runners who never finish their
race. Instead, these runners are said to be ‘censored’ and the model uses all information
up until the point of censoring (dropping out the race), and learns that they ran for at
least as long as their censoring time (the time they dropped out). Censoring is unique to
survival analysis and without the presence of censoring, survival analysis is mathematically
equivalent to regression.

This book covers survival analysis in the most common right-censoring setting for indepen-
dent censoring, as well as discussing competing risk frameworks for dependent censoring -
these terms will all be covered in the introduction of the book.

A note from Raphael: I wrote my PhD thesis about machine learning applications to
survival analysis as I was interested in understanding why more researchers were not using
machine learning models for survival analysis. Since then I’ve had the pleasure to work with,
and advise, researchers across different sectors, including pharmaceutical companies, gov-
ernmental agencies, funding organisations, and research institutions. I hope that this book
continues to help researchers discover machine learning survival analysis and to navigate
the nuances and complexities it presents.

A note from Andreas: FIXME.

xi



xii Preface

Overview
This textbook is intended to fill a gap in the literature by providing a comprehensive in-
troduction to machine learning in the survival setting. If you are interested in machine
learning or survival analysis separately then you might consider James et al. (2013), Hastie,
Tibshirani, and Friedman (2001), Bishop (2006) for machine learning and Collett (2014), J.
D. Kalbfleisch and Prentice (1973) for survival analysis. This book serves as a complement
to the above examples and introduces common machine learning terminology from simpler
settings such as regression and classification, but without diving into the detail found in
other sources, instead focusing on extension to the survival analysis setting.

This book may be useful for Masters or PhD students who are specialising in machine
learning in survival analysis, machine learning practitioners looking to work in the survival
setting, or statisticians who are familiar with survival analysis but less so with machine
learning. The book could be read cover-to-cover, but this is not advised. Instead it may be
preferable to dip into sections of the book as required and use the ‘signposts’ that direct
the reader to sections of the book that are relevant to each other.

The book is split into five parts:

Part I: Survival Analysis and Machine Learning The book begins by introducing
the basics of survival analysis and machine learning and unifying terminology between the
two to enable meaningful description of ‘machine learning in survival analysis’ (MLSA). In
particular, the survival analysis ‘task’ and survival ‘prediction types’ are defined.

Part II: Evaluation The second part of the book discusses measures for evaluating survival
models. These are presented in different classes that reflect the prediction types identified
in Part I. In each chapter, the measure class is introduced, particular metrics are listed, and
commentary is provided on how and when to use the measures. The final chapter of Part
II briefly discusses when to use a given measure class and provides recommendations for
model comparison.

Part III: Models Part III is a deep dive into machine learning models for solving survival
analysis problems. This begins with ‘classical’ models that may not be considered ‘machine
learning’ and then continues by exploring different classes of machine learning models includ-
ing random forests, support vector machines, gradient boosting machines, neural networks,
and other less common classes. Each model class is introduced in the simpler regression
setting and then extensions to survival analysis are discussed. Differences between model
implementations are not discussed, instead the focus is on understanding how these models
are built for survival analysis - in this way readers are well-equipped to independently follow
individual papers introducing specific implementations.

Part IV: Reduction Techniques The next part of the book introduces reduction tech-
niques in survival analysis, which is the process of solving the survival analysis task by using
methods from other fields. In particular, chapters focus on demonstrating how any survival
model can be used in the competing risks setting, discrete time modelling, Poisson methods,
pseudovalues (reduction to regression), and other advanced modelling methods.

Part V: Extensions and Outlook The final part of the book provides some miscellaneous
chapters that may be of use to readers. The first chapter lists common practical problems
that occur when running survival analysis experiments and solutions that we have found
useful. The next lists open-source software at the time of writing for running machine
learning survival analysis experiments. The final chapter is our outlook on survival analysis
and where the field may be heading.



Preface xiii

Exercises are provided at the end of the book so you can test yourself as you go along.

Citing this book
Whilst this book remains a work in progress you can cite it as

Sonabend. R, Bender. A. (2024). Machine Learning in Survival Analysis.
https://www.mlsabook.com.

@book{MLSA2024
title = {Machine Learning in Survival Analysis},
editor = {Raphael Sonabend, Andreas Bender},
url = {https://www.mlsabook.com},
year = {2024}

}

Please see the front page of the book website (https://www.mlsabook.com) for full licensing
details.

We hope you enjoy reading this book.

Raphael and Andreas

https://www.mlsabook.com
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Symbols and Notation

Minor changes expected!

This page is a work in progress and minor changes will be made over time.

The most common symbols and notation used throughout this book are presented below; in
rare cases where different meanings are intended within the book, this will be made clear.

A lower-case letter in normal font, 𝑥, refers to a single, fixed observation. When in bold
font, a lower-case letter, x, refers to a vector of fixed observations, and an upper-case letter,
X, represents a matrix. A letter in normal font with a single subscript, refers to a single
element from a vector, for example 𝑥𝑖 would be the 𝑖th element in vector x, whereas two
subscripts refer to a single element from a matrix, for example 𝑥𝑖𝑗 would be the element in
the 𝑖th row and 𝑗th column of matrix X. When referring to a row of a matrix, X, then a
subscript is used with a bold-face lower-case letter, for example the 𝑖th row would be x𝑖, in
contrast the 𝑗th column would be written as x;𝑗. Calligraphic letters, 𝒳, are used to denote
sets.

A matrix will always be defined with its dimensions using the notation, X ∈ 𝒳𝑛×𝑝, or if 𝒳
is the set of Reals, it may be written as “X is a 𝑛 × 𝑝 Real-valued matrix”. By default, a
‘vector’ will refer to a column vector, which may be thought of as a matrix with 𝑛 rows and
one column, and may be represented as:

x =
⎛⎜⎜⎜
⎝

𝑥1
𝑥2
⋮

𝑥𝑛

⎞⎟⎟⎟
⎠

Vectors are usually defined using transpose notation, for example the vector above may
instead be written as x⊤ = (𝑥1 𝑥2 ⋯ 𝑥𝑛) or x = (𝑥1 𝑥2 ⋯ 𝑥𝑛)⊤. Vectors may also be defined
in a shortened format as, x ∈ 𝒳𝑛, which implies a vector of length 𝑛 with elements as
represented above.

Typically, a ‘hat’, ̂𝑥, will refer to the prediction or estimation of a variable, 𝑥, with bold-face
used again to represent vectors. A ‘bar’, ̄𝑥, refers to the sample mean of x. Capital letters
in normal font, 𝑋, refer to scalar or vector random variables, which will be made clear
from context. 𝔼(𝑋) and Var(𝑋) are the expectation and variance of the random variable
𝑋 respectively. We write 𝐴 ⟂⟂ 𝐵, to denote that 𝐴 and 𝐵 are independent, i.e., that
𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵).
A function 𝑓 , will either be written as a formal map of domain to codomain, 𝑓 ∶ 𝒳 →
𝒴; (𝑥, 𝑦) ↦ 𝑓(𝑥, 𝑦) (which is most useful for understanding inputs and outputs), or more
simply and commonly as 𝑓(𝑥, 𝑦). Given a random variable, 𝑋, following distribution 𝜁
(mathematically written 𝑋 ∼ 𝜁), then 𝑓𝑋 denotes the probability density function, and

1



2 Symbols and Notation

analogously for other distribution defining functions. In the survival analysis context (Chap-
ter 4), a subscript “0” refers to a “baseline” function, for example, 𝑆0 is the baseline survival
function.

Common variables and acronyms used in the book are given in Table 0.1 and Table 0.2
respectively.

Table 0.1: Common variables used throughout the book.

Variable Definition
ℝ, ℝ>0, ℝ≥0, ℝ̄ Set of Reals, positive Reals (excl. zero), non-negative Reals

(incl. zero), and Reals including ±∞.
ℕ>0 Set of Naturals excluding zero.
(X, t, 𝛿) Survival data where X is an 𝑛 × 𝑝 matrix of features, t is a vector of

observed outcome times, and 𝛿 is a vector of observed outcome
indicators.

𝛽 Vector of model coefficients/weights.
𝜂 Linear predictor, 𝑋𝛽.
𝒟, 𝒟𝑡𝑟𝑎𝑖𝑛, 𝒟𝑡𝑒𝑠𝑡 Dataset, training data, and testing data.

Table 0.2: Common acronyms used throughout the book.

Acronym Definition
AFT Accelerated Failure Time
cdf Cumulative Distribution Function
chf Cumulative Hazard Function
CPH Cox Proportional Hazards
GBM Gradient Boosting Machine
GLM Generalised Linear Model
IPC(W) Inverse Probability of Censoring (Weighted)
ML Machine Learning
pdf Probability Density Function
PH Proportional Hazards
(S)SVM (Survival) Support Vector Machine
t.v.i. Taking Values In



1
Introduction

Major changes expected!

This page is a work in progress and major changes will be made over time.

TODO

• Mention somewhere that SA can be used to solve T-year prediciton problems (i.e., see
if we can get classif users over to SA).

• Also SA can be used for censoring/truncation

Writing after a global pandemic, applications of survival analysis are more relevant than
ever. Predicting the time from onset of COVID-19 symptoms to hospitalisation, or the time
from hospitalisation to intubation, or intubation to death, are all time-to-event predictions
that are at the centre of survival analysis. As well as morbid applications, survival analysis
predictions may be concerned with predicting the time until a customer cancels their gym
membership, or the lifetime of a lightbulb; any event that is guaranteed (or at least very
likely) to occur can be modelled by a survival analysis prediction. As these predictions can
be so sensitive, for example a model predicting when a child should be taken off breathing
support (Data Study Group Team 2020), the best possible predictions, evaluated to the
highest standard, are a necessity. In other fields of predictive modelling, machine learning has
made incredible breakthroughs (such as AlphaFold), therefore applying machine learning
to survival analysis is a natural step in the evolution of an important field.

Survival analysis is the field of Statistics focusing on modelling the distribution of an event,
which may mean the time until the event takes place, the risk of the event happening,
the probability of the event occurring at a single time, or the event’s underlying probability
distribution. Survival analysis (‘survival’) is a unique field of study in Statistics as it includes
the added difficulty of ‘censoring’. Censoring is best described through example: a study is
conducted to determine the mortality rate of a group of patients after diagnoses with a
particular disease. If a patient dies during this study then their outcome is ‘death’ and their
time of death can be recorded. However if a patient drops-out of the study before they die,
then their time of death (though guaranteed to occur) is unknown and the only available
information is the time at which they left the study. This patient is now said to be censored
at the time they drop out. The censoring mechanism allows as much outcome information
(time and event) to be captured as possible for all patients (observations).

Machine learning (ML) is the field of Statistics primarily concerned with building models
to either predict outputs from inputs or to learn relationships from data (Hastie, Tibshi-
rani, and Friedman 2001; James et al. 2013). This book is limited to the former case, or

3



4 Introduction

more specifically supervised learning, as this is the field in which the vast majority of sur-
vival problems live. Relative to other areas of supervised learning, development in survival
analysis has been slow – the majority of developments in machine learning for survival anal-
ysis have only been in the past decade (see chapters (?@sec-review)-(Chapter 5)). This
appears to have resulted in less interest in the development of machine learning survival
models (?@sec-review), less rigour in the evaluation of such models (Chapter 5), and
fewer off-shelf/open-source implementations (R. Sonabend et al. 2021). This book seeks
to set the foundations for clear workflows, good practice, and precise results for ‘machine
learning survival analysis’.

1.1 Why is this book needed?
Firstly, whilst there are many books dedicated to regression and classification as machine
learning problems (the ‘bibles’ of machine learning focus entirely on regression and clas-
sification only (Bishop 2006; Hastie, Tibshirani, and Friedman 2001; James et al. 2013)),
there is a deficit of books covering the survival analysis setting. By writing this book we
hope to fill this gap and enable more practitioners to use cutting-edge methods in survival
analysis. Survival analysis has important applications in healthcare, finance, engineering
and more, all fields that directly impact upon individual lives on a day-to-day basis, and
should perhaps be considered as important as classification and regression. The result of
this gap in interest, is the erroneous assumption that one field can be directly applied to
another. For example there is evidence of researchers treating censoring as a nuisance to
be ignored and using regression models instead (Schwarzer, Vach, and Schumacher 2010).
Censoring is indeed a challenge and may contribute to making survival analysis less acces-
sible than other fields, but this need not be the case; a clear unification of terminology and
presentation of methods may help make ‘machine learning survival analysis’ more accessible.
Added accessibility could lead to more academics (and non-academics) engaging with the
field and promoting good standards of practice, as well as developing more novel models
and measures.

Where survival models have been developed, these have skewed towards ‘ranking models’,
which predict the relative risk of an event occurring (Section 4.3). In many applications
these predictions are sufficient, for example in randomised control trials if assessing the
increased/decreased risk of an event after treatment. However, there are many use-cases
where predicting an individual’s survival probability distribution is required. Take, for ex-
ample, an engineer calculating the lifetime of a plane’s engine.1 There are three important
reasons to replace a jet engine at the optimal time:

• financial: jet engines are very expensive and replacing one sooner than required is a
waste of money;

• environmental: an engine being replaced too early is a waste of potential usage;
• safety: if the engine is replaced too late then there is a risk to passengers.

Now consider examples for the three possible ‘prediction types’ the engineer can make:

i. A ‘relative risk prediction’: This engine is twice as likely to fail as another.
ii. A ‘survival time prediction’: The engine is expected to fail in 30 days.

1In this engineering context, survival analysis is usually referred to as reliability analysis.
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iii. A ‘survival distribution prediction’: The lifetime of the engine is distributed ac-
cording to the probability distribution 𝜁.

The first prediction type is not useful as the underlying relative risk may be unknown and
the engineer is concerned with the individual lifetime. The second prediction type provides
a useful quantity for the engineer to work with however there is no uncertainty captured
in this prediction. The third prediction type can capture the uncertainty of failure over the
entirety of the positive Reals (though usually only a small subset is possible and useful).
With this final prediction type, the engineer can create safe decisions: ‘replace the engine
at time 𝜏 , where 𝜏 is the time when the predicted probability of survival drops below 60%,
𝑆(𝜏) = 0.6’. There are ethical, economic, and environmental reasons for a good survival
distribution prediction and this book considers a distribution prediction to be the most
important prediction type.

Evaluating predictions from survival models is of the utmost importance. This is especially
important as survival models are often deployed in the public domain, particularly in health-
care. Physical products in healthcare, such as new vaccines, undergo rigorous testing and
research in randomised control trials before being publically deployed; the same level of
rigour should be expected for the evaluation of survival models that are used in life-and-
death situations. Evaluation measures for regression and classification are well-understood
with important properties, however survival measures have not undergone the same treat-
ment. For example many survival models are still being evaluated solely with concordance
indices that have been repeatedly criticised (Gönen and Heller 2005; Rahman et al. 2017;
Schmid and Potapov 2012).

1.2 Reproducibility
This book includes simulations and figures generated in R, the code for any figures or
experiments in this book are freely available at https://github.com/mlsa-book/MLSA under
an MIT licence and all content on this website is available under CC BY 4.0. We use
renv to manage package versions, you can find our lockfile at https://github.com/mlsa-
book/MLSA/blob/main/book/renv.lock.

https://github.com/mlsa-book/MLSA
https://creativecommons.org/licenses/by/4.0/
https://cran.r-project.org/package=renv
https://github.com/mlsa-book/MLSA/blob/main/book/renv.lock
https://github.com/mlsa-book/MLSA/blob/main/book/renv.lock
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TODO (150-200 WORDS)

Page coming soon!

We are working on this page and it will be available soon!
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Statistical Learning

TODO (150-200 WORDS)

Major changes expected!

This page is a work in progress and major changes will be made over time.

TODO

• 𝒟 - labeled data set with 𝑛 observation
• Observations: (x(𝑖), 𝑦(𝑖)) where x(𝑖) ∈ 𝒳 is a 𝑝-dimensional feature vector and 𝑦(𝑖) ∈ 𝒴 is a

label
• Data set: 𝒟 = ((x(1), 𝑦(1)), ..., (x(𝑛), 𝑦(𝑛)))
• Assume 𝒟 𝑖.𝑖.𝑑.∼ (ℙ𝑥𝑦)𝑛 (unknown distribution)
• ML model: 𝑓 ∶ 𝒳 → ℝ𝑔 assigning a prediction in ℝ𝑔

• ML learners, ℐ, configured by hyperparameters 𝜆 ∈ Λ, are ℐ ∶ 𝔻 × Λ → ℋ, (𝒟, 𝜆) ↦ ̂𝑓
where ℋ is the function space to which a model belongs and ̂𝑓 is a trained model with
learned hyperparameters ̂𝜃 ∈ ℋ.

• Models are evaluated with loss functions which measure the discrepancy between predic-
tions and true values 𝐿 ∶ 𝒴 × ℝ𝑔 → ℝ, ( ̂𝑓(x), y) ↦ 𝑙( ̂𝑓(x), y)

• To prevent overfitting, models are evaluated on unseen test data to ensure un-
biased performance estimation and the generalization error 𝐺𝐸(ℐ, 𝜆, 𝑛𝑡𝑟𝑎𝑖𝑛, 𝑙) ∶=
lim𝑛𝑡𝑒𝑠𝑡→∞ 𝔼𝒟𝑡𝑟𝑎𝑖𝑛,𝒟𝑡𝑒𝑠𝑡∼ℙ𝑥𝑦

[𝑙(y𝑡𝑒𝑠𝑡, F𝒟𝑡𝑒𝑠𝑡,ℐ(𝒟𝑡𝑟𝑎𝑖𝑛,𝜆))] where F𝒟𝑡𝑒𝑠𝑡,ℐ(𝒟𝑡𝑟𝑎𝑖𝑛,𝜆) is the ma-
trix of predictions from a model trained on 𝒟𝑡𝑟𝑎𝑖𝑛 and making predictions on 𝒟𝑡𝑒𝑠𝑡.

3.1 Machine Learning
This section begins with a very brief introduction to machine learning and a focus on regres-
sion and classification; the survival machine learning task is then introduced (Section 4.4).
Of the many fields within machine learning (ML), the scope of this book is narrowed to su-
pervised learning. Supervised learning is the sub-field of ML in which predictions are made
for outcomes based on data with observed dependent and independent variables. For exam-
ple predicting someone’s height is a supervised learning problem as data can be collected

11
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for features (independent variables) such as age and sex, and outcome (dependent vari-
able), which is height. Predictive survival analysis problems fall naturally in the supervised
learning framework as there are identifiable features and (multiple types of) outcomes.

3.1.1 Terminology and Methods
Common supervised learning methods are discussed in a simplified setting with features
𝑋 𝑡.𝑣.𝑖. 𝒳 and outcomes 𝑌 𝑡.𝑣.𝑖. 𝒴; usually outcomes are referred to as ‘targets’ (a ‘target
for prediction’). Let 𝒟0 = {(𝑋1, 𝑌1), ..., (𝑋𝑛, 𝑌𝑛)} be a (training) dataset where (𝑋𝑖, 𝑌𝑖)

𝑖.𝑖.𝑑.∼
(𝑋, 𝑌 ). The methods below extend naturally to the survival setting.

Strategies and Models

In order to clearly separate between similar objects, several terms for machine learning are
now introduced and clearly distinguished.

Let 𝑔 ∶ 𝒳 → 𝒴 be the true (but unknown) mapping from the features to outcomes, referred
to as the true prediction functional. Let 𝒢 be the set of prediction functionals such that
∀Υ ∈ 𝒢, Υ ∶ 𝒳 → 𝒴. A learning or fitting algorithm is defined to be any function of the form
𝒜 ∶ 𝒳𝑛 × 𝒴𝑛 → 𝒢. The goal of supervised learning is to learn 𝑔 with a learning algorithm
fit on (i.e. the input to the algorithm is) training data, ̂𝑔 ∶= 𝒜(𝒟𝑡𝑟𝑎𝑖𝑛) ∈ 𝒢. Note that ̂𝑔
may take hyper-parameters that can be set or tuned (see below). The learning algorithm is
‘good’ if ̂𝑔(𝑋) ≈ 𝑔(𝑋) (see ‘Evaluation’ below).

The learning algorithm is determined by the chosen learning strategy and model, where a
model is a complete specification of a learning strategy including hyper-parameters. These
terms are more clearly illustrated by example:

i. Learning strategy – simple linear regression
ii. Model – 𝑦 = 𝛽0 + 𝛽1𝑥 where 𝑥 ∈ ℝ is a single covariate, 𝑦 ∈ ℝ is the target, and

𝛽0, 𝛽1 ∈ ℝ are model coefficients.
iii. Learning algorithm (model fitting) – Minimise the residual sum of squares:

( ̂𝛽0, ̂𝛽1) ∶= argmin𝛽0,𝛽1
{∑𝑛

𝑖=1(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)2} for (𝑥𝑖, 𝑦𝑖) ∈ 𝒟𝑡𝑟𝑎𝑖𝑛, 𝑖 = 1, ..., 𝑛.
iv. Prediction functional – ̂𝑔(𝑥) = ̂𝛽0 + ̂𝛽1𝑥

To further illustrate the difference between learning strategy and model, note that the same
learning strategy ‘simple linear regression’ could either utilise the model above or instead
a model without intercept, 𝑦 = 𝛽𝑥, in which case the learning algorithm and prediction
functional would also be modified.

The model in (ii) is called unfitted as the model coefficients are unknown and the model
cannot be used for prediction. After step (iii) the model is said to be fit to the training
data and therefore the model is fitted.1 It is common to refer to the learning algorithm (and
associated hyper-parameters) as the unfitted model and to refer to the prediction functional
(and associated hyper-parameters) as the fitted model.

1The terms ’fitted’ and ’unfitted’ are used instead of ’fit’ and ’unfit’ to prevent confusion with words such
as ’suitable’ and ’unsuitable’.
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Evaluation

Models are evaluated by evaluation measures called losses or scores,2 𝐿 ∶ 𝒴 × 𝒴 → ℝ̄. Let
(𝑋∗, 𝑌 ∗) ∼ (𝑋, 𝑌 ) be test data (i.e. independent of 𝒟𝑡𝑟𝑎𝑖𝑛) and let ̂𝑔 ∶ 𝒳 → 𝒴 be a prediction
functional fit on 𝒟𝑡𝑟𝑎𝑖𝑛, then these evaluation measures determine how closely predictions,

̂𝑔(𝑋∗), relate to the truth, 𝑌 ∗, thereby providing a method for determining if a model is
‘good’.3

Task

A machine learning task is a simple mechanism to outline the problem of interest by pro-
viding: i) the data specification; ii) the definition of learning; iii) the definition of success
(when is a prediction ‘good’?) (Franz J. Király et al. 2021). All tasks in this paper have
the same definitions of learning and success. For (ii), the aim is to learn the true prediction
functional, 𝑔, by fitting the learning algorithm on training data, ̂𝑔 ∶= 𝒜(𝒟0). For (iii), a pre-
dicted functional is considered ‘good’ if the expected generalization error, 𝔼[𝐿(𝑌 ∗, ̂𝑔(𝑋∗))],
is low, where (𝑋∗, 𝑌 ∗) ∼ (𝑋, 𝑌 ) is independent of the training data 𝒟0, and 𝐿 is some loss
that is chosen according to the domain of interest (regression, classification, survival).

Resampling

Models are tested on their ability to make predictions. In order to avoid ‘optimism of training
error’ (James et al. 2013) – overconfidence caused by testing the model on training data –
models are tested on previously unseen or ‘held-out’ data. Resampling is the procedure of
splitting one dataset into two or more for separated training and testing. In this paper only
two resampling methods are utilised: holdout and cross-validation. Holdout is the process
of splitting a primary dataset into training data for model fitting and testing data for
model predicting. This is an efficient method but may not accurately estimate the expected
generalisation error for future model performance, instead this is well-estimated by 𝐾-fold
cross-validation (KCV) (Hastie, Tibshirani, and Friedman 2001). In KCV, data is split into
𝐾 ∈ ℕ>0 ‘folds’ such that 𝐾 − 1 of the folds are used for model training and the final 𝐾th
fold for testing. The testing fold is iterated over all 𝐾 folds, so that each at some point is
used for testing and then training (though never at the same time). In each iteration the
model is fit on the training folds, and predictions are made and evaluated on the testing
fold, giving a loss 𝐿𝑘 ∶= 𝐿( ̂𝑔(𝑋𝑘), 𝑌 𝑘), where (𝑋𝑘, 𝑌 𝑘) are data from the 𝑘th fold. A final
loss is defined by, 𝐿∗ ∶= 1

𝐾 ∑𝐾
𝑘=1 𝐿𝑘. Commonly 𝐾 = 5 or 𝐾 = 10 (Breiman and Spector

1992; Kohavi 1995).

Model Performance Benchmarking

Whilst benchmarking often refers to speed tests, i.e. the time taken to complete an operation,
it can also refer to any experiment in which objects (mathematical or computational) are
compared. In this report, a benchmark experiment will either refer to the comparison of
multiple models’ predictive abilities, or comparison of computational speeds and object sizes
for model fitting; which of these will be clear from context.

2The term ’loss’ is usually utilised to refer to evaluation measures to be minimised, whereas ’scores’
should be maximised, this is returned to in (@sec-eval).

3Here evaluation refers specifically to predictive ability; other forms of evaluation and further discussion
of the area are provided in (@sec-eval).
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Model Comparison

Models can be analytically compared on how well they make predictions for new data. Model
comparison is a complex topic with many open questions (Demšar 2006; Dietterich 1998;
Nadeau and Bengio 2003) and as such discussion is limited here. When models are compared
on multiple datasets, there is more of a consensus in how to evaluate models (Demšar 2006)
and this is expanded on further in (R. E. B. Sonabend 2021). Throughout this book there
are small simulation experiments for model comparison on single datasets however as these
are primarily intended to aid exposition and not to generalise results, it suffices to compare
models with the conservative method of constructing confidence intervals around the sample
mean and standard error of the loss when available (Nadeau and Bengio 2003).

Hyper-Parameters and Tuning

A hyper-parameter is a model parameter that can be set by the user, as opposed to coef-
ficients that are estimated as part of model fitting. A hyper-parameter can be set before
training, or it can be tuned. Tuning is the process of choosing the optimal hyper-parameter
value via automation. In the simplest setting, tuning is performed by selecting a range
of values for the hyper-parameter(s) and treating each choice (combination) as a different
model. For example if tuning the number of trees in a random forest (Section 13.1), 𝑚𝑟,
then a range of values, say 100, 200, 500 are chosen, and three models 𝑚𝑟100, 𝑚𝑟200, 𝑚𝑟500
are benchmarked. The optimal hyper-parameter is given by whichever model is the best
performing. Nested resampling is a common method to prevent overfitting that could occur
from using overlapping data for tuning, training, or testing. Nested resampling is the process
of resampling the training set again for tuning.
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3.1.2 Machine Learning in Classification and Regression
Before introducing machine learning for survival analysis, which is considered ‘non-classical’,
the more standard classification and regression set-ups are provided; these are referenced
throughout this book.

3.1.2.1 Classification

Classification problems make predictions about categorical (or discrete) events, these may be
deterministic or probabilistic. Deterministic classification predicts which category an observa-
tion falls into, whereas probabilistic classification predicts the probability of an observation
falling into each category. In this brief introduction only binary single-label classification
is discussed, though the multi-label case is considered in ??. In binary classification, there
are two possible categories an observation can fall into, usually referred to as the ‘positive’
and ‘negative’ class. For example predicting the probability of death due to a virus is a
probabilistic classification task where the ‘positive’ event is death.

A probabilistic prediction is more informative than a deterministic one as it encodes un-
certainty about the prediction. For example it is clearly more informative to predict a 70
chance of rain tomorrow instead of simply ‘rain’. Moreover the latter prediction implicitly
contains an erroneous assumption of certainty, e.g. ‘it will rain tomorrow’.

Classification Task

Box 3.1. Let (𝑋, 𝑌 ) be random variables t.v.i. 𝒳 × 𝒴 where 𝒳 ⊆ ℝ𝑝 and 𝒴 = {0, 1}.
Then,
• The probabilistic classification task is the problem of predicting the probability of a

single event taking place and is specified by 𝑔 ∶ 𝒳 → [0, 1].
• The deterministic classification task is the problem of predicting if a single event

takes place and is specified by 𝑔 ∶ 𝒳 → 𝒴.
The estimated prediction functional ̂𝑔 is fit on training data \(𝑋1, 𝑌1), ..., (𝑋𝑛, 𝑌𝑛) 𝑖.𝑖.𝑑.∼
(𝑋, 𝑌 ) and is considered ‘good’ if 𝔼[𝐿(𝑌 ∗, ̂𝑔(𝑋∗))] is low, where (𝑋∗, 𝑌 ∗) ∼ (𝑋, 𝑌 ) is
independent of (𝑋1, 𝑌1), ..., (𝑋𝑛, 𝑌𝑛) and ̂𝑔.
In the probabilistic case, the prediction ̂𝑔 maps to the estimated probability mass
function ̂𝑝𝑌 such that ̂𝑝𝑌 (1) = 1 − ̂𝑝𝑌 (0).

3.1.2.2 Regression

A regression prediction is one in which the goal is to predict a continuous outcome from a
set of features. For example predicting the time until an event (without censoring) occurs,
is a regression problem.

Regression Task

Box 3.2. Let (𝑋, 𝑌 ) be random variables t.v.i. 𝒳 × 𝒴 where 𝒳 ⊆ ℝ𝑝 and 𝒴 ⊆ ℝ. Let
𝒮 ⊂ Distr(𝒴) be a convex set of distributions on 𝒴. Then,

• The probabilistic regression task is the problem of predicting a conditional distribu-
tion over the Reals and is specified by 𝑔 ∶ 𝒳 → 𝒮.

• The deterministic regression task is the problem of predicting a single continuous
value in the Reals and is specified by 𝑔 ∶ 𝒳 → 𝒴.

The estimated prediction functional ̂𝑔 is fit on training data \(𝑋1, 𝑌1), ..., (𝑋𝑛, 𝑌𝑛) 𝑖.𝑖.𝑑.∼
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(𝑋, 𝑌 ) and is considered ‘good’ if 𝔼[𝐿(𝑌 ∗, ̂𝑔(𝑋∗))] is low, where (𝑋∗, 𝑌 ∗) ∼ (𝑋, 𝑌 ) is
independent of (𝑋1, 𝑌1), ..., (𝑋𝑛, 𝑌𝑛) and ̂𝑔.

Whilst regression can be either probabilistic or deterministic, the latter is much more com-
mon and therefore in this book ‘regression’ refers to the deterministic case unless otherwise
stated.



4
Survival Analysis

TODO (150-200 WORDS)

Major changes expected!

This page is a work in progress and major changes will be made over time.

TODO

• Make sure intro is clear about censoring/truncation and that metrics can’t highlight if this
is setup wrong - analogously to hypothesis testing not testing the result but hypothesis,
p-hacking, etc.

• If measures for right-censoring used in parts of pipelines hard to discern biases if wrong
type of measure used

• Same as dependent/independent censoring and measures problem

In their broadest and most basic definitions, survival analysis is the study of temporal data
from a given origin until the occurrence of one or more events or ‘end-points’ (Collett 2014),
and machine learning is the study of models and algorithms that learn from data in order to
make predictions or find patterns (Hastie, Tibshirani, and Friedman 2001). Reducing either
field to these definitions is ill-advised.

This chapter collects terminology utilised in survival analysis (Section 4.1) and machine
learning (Section 3.1) in order that this book can cleanly discuss ‘machine learning survival
analysis’ (Section 4.4). Once the mathematical setting is set up, the book scope is fully
presented in (Section 4.2). Whilst the content of this chapter is not novel with respect
to either survival analysis or machine learning separately, this does appear to be the first
formulation of the survival analysis machine learning ‘task’ (Franz J. Király et al. 2021).

4.1 Survival Analysis
Survival analysis is the field of Statistics concerned with the analysis of time-to-event data,
which consists of covariates, a categorical (often binary) outcome, and the time until this
outcome takes place (the ‘survival time’). As a motivating example of time-to-event data,
say 100 patients are admitted to a COVID-19 ward and for each patient the following
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covariate data are collected: age, weight and sex; additionally for each patient the time
until death or discharge is recorded. In the time-to-event dataset, which takes a standard
tabular form, each of the 100 patients is a row, with columns consisting of age, weight, and
sex measurements, as well as the outcome (death or discharge) and the time to outcome.

Survival analysis is distinct from other areas of Statistics due to the incorporation of ‘censor-
ing’, a mechanism for capturing uncertainty around when an event occurs in the real-world.
Continuing the above example, if a patient dies of COVID-19 five dies after admittance,
then their outcome is exactly known: they died after five days. Consider now a patient who
is discharged after ten days. As death is a guaranteed event they have a true survival time
but this may be decades later, therefore they are said to be censored at ten days. This is
a convenient method to express that the patient survives up to ten days and their survival
status at any time after this point is unknown. Censoring is a unique challenge to survival
analysis that attempts to incorporate as much information as possible without knowing
the true outcome. This is a ‘challenge’ as statistical models usually rely on learning from
observed, i.e. known, outcome data; therefore censoring requires special treatment.

Whilst survival analysis occurs in many fields, for example as ‘reliability analysis’ in engi-
neering and ‘duration analysis’ in economics, in this book the term ‘survival’ will always be
used. Moreover the following terminology, analogous to a healthcare setting, are employed:
survival analysis (or ‘survival’ for short) refers to the field of study; the event of interest
is the ‘event’, or ‘death’; an observation that has not experienced an event is ‘censored’ or
‘alive’; and observations are referred to as ‘observations’, ‘subjects’, or ‘patients’.

Some of the biggest challenges in survival analysis stem from an unclear definition of a
‘survival analysis prediction’ and different (sometimes conflicting) common notations. This
book attempts to make discussions around survival analysis clearer and more precise by
first describing the mathematical setting for survival analysis in (Section 4.1.1) and only
then defining the prediction types to consider in (Section 4.3).

4.1.1 Survival Data and Definitions
Survival analysis has a more complicated data setting than other fields as the ‘true’ data
generating process is not directly modelled but instead engineered variables are defined to
capture observed information. Let,

• 𝑋 𝑡.𝑣.𝑖. 𝒳 ⊆ ℝ𝑝, 𝑝 ∈ ℕ>0 be the generative random variable representing the data fea-
tures/covariates/independent variables.

• 𝑌 𝑡.𝑣.𝑖. 𝒯 ⊆ ℝ≥0 be the (unobservable) true survival time.
• 𝐶 𝑡.𝑣.𝑖. 𝒯 ⊆ ℝ≥0 be the (unobservable) true censoring time.

It is impossible to fully observe both 𝑌 and 𝐶. This is clear by example: if an observation
drops out of a study then their censoring time is observed but their event time is not, whereas
if an observation dies then their true censoring time is unknown. Hence, two engineered
variables are defined to represent observable outcomes. Let,

• 𝑇 ∶= min{𝑌 , 𝐶} be the observed outcome time.
• Δ ∶= 𝕀(𝑌 = 𝑇 ) = 𝕀(𝑌 ≤ 𝐶) be the survival indicator (also known as the censoring or

event indicator).1

Together (𝑇 , Δ) is referred to as the survival outcome or survival tuple and they form the
dependent variables. The survival outcome provides a concise mechanism for representing

1Indicators are usually named to reflect a positive condition in the function (in this case the event when
𝑌 = 𝑇 ), but counter to this convention the ’censoring indicator’ is possibly the most common term.
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the time of the observed outcome and indicating which outcome (death or censoring) took
place.

Now the full generative template for survival analysis is given by \ (𝑋, Δ, 𝐶, 𝑌 , 𝑇 ) 𝑡.𝑣.𝑖. 𝒳×
{0, 1} × 𝒯 × 𝒯 × 𝒯 and with (𝑋𝑖, Δ𝑖, 𝐶𝑖, 𝑌𝑖, 𝑇𝑖) jointly i.i.d. A survival dataset is defined
by 𝒟 = {(𝑋1, 𝑇1, Δ1), ..., (𝑋𝑛, 𝑇𝑛, Δ𝑛)} where (𝑋𝑖, 𝑇𝑖, Δ𝑖)

𝑖.𝑖.𝑑.∼ (𝑋, 𝑇 , Δ) and 𝑋𝑖 is a 𝑝-
vector, 𝑋𝑖 = (𝑋𝑖;1, ..., 𝑋𝑖;𝑝). Though unobservable, the true outcome times are defined by
(𝑌1, 𝐶1), ..., (𝑌𝑛, 𝐶𝑛) where (𝑌𝑖, 𝐶𝑖)

𝑖.𝑖.𝑑.∼ (𝑌 , 𝐶).

(1) exemplifies a random survival dataset with 𝑛 observations (rows) and 𝑝 features.

Table 4.1: Theoretical time-to-event dataset. (𝑌 , 𝐶) are ‘hypothetical’ as they can never be
directly observed. Rows are individual observations, 𝑋 columns are features, 𝑇 is observed
time-to-event, Δ is the censoring indicator, and (𝑌 , 𝐶) are hypothetical true survival and
censoring times.

X X X T Δ Y C
𝑋11 ⋯ 𝑋1𝑝 𝑇1 Δ1 𝑌1 𝐶1
⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
𝑋𝑛1 ⋯ 𝑋𝑛𝑝 𝑇𝑛 Δ𝑛 𝑌𝑛 𝐶𝑛

(2) exemplifies an observed survival dataset with a modified version of the rats
dataset (Therneau 2015).

Table 4.2: rats (Therneau 2015) time-to-event dataset with added hypothetical columns
(𝑌 , 𝐶). Rows are individual observations, 𝑋 columns are features, 𝑇 is observed time-to-
event, Δ is the censoring indicator, and (𝑌 , 𝐶) are hypothetical (here arbitrary values
dependent on (𝑇 , Δ)) true survival and censoring times.

litter
(𝑋.;1) rx (𝑋.;2) sexF (𝑋.;3) time (T)

status
(Δ)

survTime
(Y)

censTime
(C)

1 1 1 101 0 105 101
1 0 1 49 1 49 55
1 0 1 104 0 200 104
2 1 0 91 0 92 91
2 0 0 104 1 104 104
2 0 0 102 1 102 120

Both datasets includes two extra columns, on the right of the triple vertical line, which
imagine hypothetical data for the unobserved true survival and censoring times.

Finally the following terms are used frequently throughout this report. Let (𝑇𝑖, Δ𝑖)
𝑖.𝑖.𝑑.∼

(𝑇 , Δ), 𝑖 = 1, ..., 𝑛, be random survival outcomes. Then,

• The set of unique or distinct time-points refers to the set of time-points in which at least
one observation dies or is censored, 𝒰𝑂 ∶= {𝑇𝑖}𝑖∈{1,...,𝑛}.

• The set of unique death times refers to the set of unique time-points in which death (and
not censoring) occurred, 𝒰𝐷 ∶= {𝑇𝑖 ∶ Δ𝑖 = 1}𝑖∈{1,...,𝑛}.
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• The risk set at a given time-point, 𝜏 , is the set of subjects who are known to be alive
(not dead or censored) just before that time, ℛ𝜏 ∶= {𝑖 ∶ 𝑇𝑖 ≥ 𝜏} where 𝑖 is a unique
row/subject in the data.

• The number of observations alive at 𝜏 is the cardinality of the risk set, |ℛ𝜏 |, and is denoted
by 𝑛𝜏 ∶= ∑𝑖 𝕀(𝑇𝑖 ≥ 𝜏).

• The number of observations who die at 𝜏 is denoted by 𝑑𝜏 ∶= ∑𝑖 𝕀(𝑇𝑖 = 𝜏, Δ𝑖 = 1).
• The Kaplan-Meier estimate of the average survival function of the training data survival

distribution is the Kaplan-Meier estimator (Section 11.1.1) fit (Section 3.1.1) on training
data (𝑇𝑖, Δ𝑖) and is denoted by ̂𝑆𝐾𝑀 .

• The Kaplan-Meier estimate of the average survival function of the training data censoring
distribution is the Kaplan-Meier estimator fit on training data (𝑇𝑖, 1 − Δ𝑖) and is denoted
by ̂𝐺𝐾𝑀 .

Notation and definitions will be recapped at the start of each chapter for convenience.

4.1.2 Censoring
Censoring is now discussed in more detail and important concepts introduced. Given the
survival generating process (𝑋, 𝑇 , Δ) with unobservable (𝑌 , 𝐶), the event is experienced if
𝑌 ≤ 𝐶 and Δ = 1 or censored if Δ = 0.
#### Censoring ‘Location’ {.unnumbered .unlisted}

Right-censoring is the most common form of censoring in survival models and it occurs
either when a patient drops out (but doesn’t experience the event) of the study before the
end and thus their outcome is unknown, or if they experience the event at some unknown
point after the study end. Formally let [𝜏𝑙, 𝜏𝑢] be the study period for some, 𝜏𝑙, 𝜏𝑢 ∈ ℝ≥0.
Then right-censoring occurs when either 𝑌 > 𝜏𝑢 or when 𝑌 ∈ [𝜏𝑙, 𝜏𝑢] and 𝐶 ≤ 𝑌 . In the
first case 𝑇 = 𝐶 = 𝜏𝑢 and censoring is due to the true time of death being unknown as
the observation period has finished. In the latter case, a separate censoring event, such as
drop-out or another competing risk, is observed.

Left-censoring is a rarer form of censoring and occurs when the event happens at some
unknown time before the study start, 𝑌 < 𝜏𝑙. Interval-censoring occurs when the event
takes place in some interval within the study period, but the exact time of event is unknown.
(Figure 4.1) shows a graphical representation of right-censoring.

Censoring ‘Dependence’

Censoring is often defined as uninformative if 𝑌 ⟂⟂ 𝐶 and informative otherwise however
these definitions can be misleading as the term ‘uninformative’ appears to be imply that
censoring is independent of both 𝑋 and 𝑌 , and not just 𝑌 . Instead the following more
precise definitions are used in this report.

Definition 4.1 (Censoring). Let (𝑋, 𝑇 , Δ, 𝑌 , 𝐶) be defined as above, then

• If 𝐶 ⟂⟂ 𝑋, censoring is feature-independent, otherwise censoring is feature-dependent.
• If 𝐶 ⟂⟂ 𝑌 , then censoring is event-independent, otherwise censoring is event-dependent.
• If (𝐶 ⟂⟂ 𝑌 )|𝑋, censoring is conditionally independent of the event given covariates, or

conditionally event-independent.
• If 𝐶 ⟂⟂ (𝑋, 𝑌 ) censoring is uninformative, otherwise censoring is informative.

Non-informative censoring can generally be well-handled by models as true underlying pat-
terns can still be detected and the reason for censoring does not affect model inference
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Figure 4.1: Dead and censored subjects (y-axis) over time (x-axis). Black diamonds indicate
true death times and white circles indicate censoring times. Vertical line is the study end
time. Subjects 1 and 2 die in the study time. Subject 3 is censored in the study and (un-
known) dies within the study time. Subject 4 is censored in the study and (unknown) dies
after the study. Subject 5 dies after the end of the study.

or predictions. However in the real-world, censoring is rarely non-informative as reasons
for drop-out or missingness in outcomes tend to be related to the study of interest. Event-
dependent censoring is a tricky case that, if not handled appropriately (by a competing-risks
framework), can easily lead to poor model development; the reason for this can be made
clear by example: Say a study is interested in predicting the time between relapses of stroke
but a patient suffers a brain aneurysm due to some separate neurological condition, then
there is a high possibility that a stroke may have occurred if the aneurysm had not. There-
fore a survival model is unlikely to distinguish the censoring event (aneurysm) from the
event of interest (stroke) and will confuse predictions. In practice, the majority of models
and measures assume that censoring is conditionally event-independent and hence censoring
can be predicted by the covariates whilst not directly depending on the event. For example
if studying the survival time of ill pregnant patients in hospital, then dropping out of the
study due to pregnancy is clearly dependent on how many weeks pregnant the patient is
when the study starts (for the sake of argument assume no early/late pregnancy due to
illness).

Type I Censoring

Type I and Type II censoring are special-cases of right-censoring, only Type I is discussed
in this book as it is more common in simulation experiments. Type I censoring occurs if a
study has a set end-date, or maximum survival time, and a patient survives until the end
of the study. If survival times are dependent on covariates (i.e. not random) and the study
start date is known (or survival times are shifted to the same origin) then Type I censoring
will usually be informative as censored patients will be those who survived the longest.
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4.2 Book Scope
Now that the mathematical setting has been defined, the book scope is provided. For time
and relevance the scope of this book is narrowed to the most parsimonious setting that
is genuinely useful in modelling real-world scenarios. This is the setting that captures all
assumptions made by the majority of proposed survival models and therefore is practical
both theoretically and in application. This setting is defined by the following assumptions
(with justifications):

• Let 𝑝 be the proportion of censored observations in the data, then 𝑝 ∈ (0, 1). This open in-
terval prevents the case when 𝑝 = 0, which is simply a regression problem (Section 3.1.2.2),
or the case when 𝑝 = 1, in which no useful models exist (as the event never occurs).

• Only right-censoring is observed in the data, no left- or interval-censoring. This accurately
reflects most real-world data in which observations that have experienced the event be-
fore the study start (left-censoring) are usually not of interest, and close monitoring of
patients means that interval-censoring is unlikely in practice. It is acknowledged that left-
truncation is a common problem in medical datasets though this is often handled not by
models but by data pre-processing, which is not part of the workflow discussed in this
book.

• There is only one event of interest, an observation that does not experience this event is
censored. This eliminates the ‘competing risk’ setting in which multiple events of interest
can be modelled.

• The event can happen at most once. For example the event could be death or initial
diagnosis of a disease however cannot be recurrent such as seizure. In the case where the
event could theoretically happen multiple times, only the time to one (usually the first)
occurrence of the event is modelled.

• The event is guaranteed to happen at least once. This is an assumption implicitly made
by all survival models as predictions are for the time until the true event, 𝑌 , and not the
observed outcome, 𝑇 .

For both the multi-event and recurrent-event cases, simple reductions exist such that these
settings can be handled by the models discussed in this paper however this is not discussed
further here.

No assumptions are made about whether censoring is dependent on the data but when
models and measures make these assumptions, they will be explicitly discussed.

The purpose of any statistical analysis is dependent on the research question. For example
techniques are available for data analysis, imputation, exploration, prediction, and more.
This book focuses on the predictive setting; other objectives, such as model inspection and
data exploration can be achieved post-hoc via interpretable machine learning techniques
(Molnar 2019).

Finally, the methods in this book are restricted to frequentist statistics. Bayesian methods
are not discussed as the frequentist setting is usually more parsimonious and additionally
there are comparatively very few off-shelf implementations of Bayesian survival methods.
Despite this, it is noted that Bayesian methods are particularly relevant to the research
in this book, which is primarily concerned with uncertainty estimates and predictions of
distributions. Therefore, a natural extension to the work in this book would be to fully
explore the Bayesian setting.
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4.3 Survival Prediction Problems
This section continues by defining the survival problem narrowed to the scope described in
the previous section. Defining a single ‘survival prediction problem’ (or ‘task’) is important
mathematically as conflating survival problems could lead to confused interpretation and
evaluation of models. Let (𝑋, 𝑇 , Δ) and 𝒟 be as defined above. A general survival prediction
problem is one in which:

• a survival dataset, 𝒟, is split (Section 3.1.1) for training, 𝒟𝑡𝑟𝑎𝑖𝑛, and testing, 𝒟𝑡𝑒𝑠𝑡;
• a survival model is fit on 𝒟𝑡𝑟𝑎𝑖𝑛; and
• the model predicts some representation of the unknown true survival time, 𝑌 , given 𝒟𝑡𝑒𝑠𝑡.

The process of ‘fitting’ is model-dependent, and can range from simple maximum likeli-
hood estimation of model coefficients, to complex algorithms. The model fitting process
is discussed in more abstract detail in (Section 3.1) and then concrete algorithms are dis-
cussed in (?@sec-review). The different survival problems are separated by ‘prediction
types’ or ‘prediction problems’, these can also be thought of as predictions of different
‘representations’ of 𝑌 . Four prediction types are discussed in this paper, these may be the
only possible survival prediction types and are certainly the most common as identified in
chapters (?@sec-review) and (Chapter 5). They are predicting:

• The relative risk of an individual experiencing an event – A single continuous ranking.
• The time until an event occurs – A single continuous value.
• The prognostic index for a model – A single continuous value.
• An individual’s survival distribution – A probability distribution.

The first three of these are referred to as deterministic problems as they predict a single
value whereas the fourth is probabilistic and returns a full survival distribution. Definitions
of these are expanded on below.

Survival predictions differ from other fields in two respects. Firstly, the predicted outcome,
𝑌 , is a different object than the outcome used for model training, (𝑇 , Δ). This differs from,
say, regression in which the same object (a single continuous variable) is used for fitting and
predicting. Secondly, with the exception of the time-to-event prediction, all other prediction
types do not predict 𝑌 but some other related quantity.

Survival prediction problems must be clearly separated as they are inherently incompatible.
For example it is not meaningful to compare a relative risk prediction from one observation
to a survival distribution of another. Whilst these prediction types are separated above, they
can be viewed as special cases of each other. Both (1) and (2) may be viewed as variants of
(3); and (1), (2), and (3) can all be derived from (4); this is elaborated on below.

Relative Risk/Ranking

This is perhaps the most common survival problem and is defined as predicting a continuous
rank for an individual’s ‘relative risk of experiencing the event’. For example, given three
patients, {𝑖, 𝑗, 𝑘}, a relative risk prediction may predict the ‘risk of event’ as {0.1, 0.5, 10}
respectively. From these predictions, the following types of conclusions can be drawn:

• Conclusions comparing patients. e.g. 𝑖 is at the least risk; the risk of 𝑗 is only slightly
higher than that of 𝑖 but the risk of 𝑘 is considerably higher than 𝑗; the corresponding
ranks for 𝑖, 𝑗, 𝑘, are 1, 2, 3.
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• Conclusions comparing risk groups. e.g. thresholding risks at 1.0 places 𝑖 and 𝑗 in a ‘low-
risk’ group and 𝑘 in a ‘high-risk’ group

So whilst many important conclusions can be drawn from these predictions, the values
themselves have no meaning when not compared to other individuals. Interpretation of these
rankings has historically been conflicting in implementation, with some software having
the interpretation ‘higher ranking implies higher risk’ whereas others may indicate ‘higher
ranking implies lower risk’ ??. In this book, a higher ranking will always imply a higher risk
of event (as in the example above).

Time to Event

Predicting a time to event is the problem of predicting the deterministic survival time of a
patient, i.e. the amount of time for which they are predicted to be alive after some given
start time. Part of the reason this problem is less common in survival analysis is because it
borders regression – a single continuous value is predicted – and survival – the handling of
censoring is required – but neither is designed to solve this problem directly. Time-to-event
predictions can be seen as a special-case of the ranking problem as an individual with a
predicted longer survival time will have a lower overall risk, i.e. if 𝑡𝑖, 𝑡𝑗 and 𝑟𝑖, 𝑟𝑗 are survival
time and ranking predictions for patients 𝑖 and 𝑗 respectively, then 𝑡𝑖 > 𝑡𝑗 → 𝑟𝑖 < 𝑟𝑗.

Prognostic Index

Given covariates, 𝑥 ∈ ℝ𝑛×𝑝, and a vector of model coefficients, 𝛽 ∈ ℝ𝑝, the linear predictor
is defined by 𝜂 ∶= 𝑥𝛽 ∈ ℝ𝑛. The ‘prognostic index’ is a term that is often used in survival
analysis papers that usually refers to some transformation (possibly identity), 𝜙, on the
linear predictor, 𝜙(𝜂). Assuming a predictive function (for survival time, risk, or distribution
defining function (see below)) of the form 𝑔(𝜑)𝜙(𝜂), for some function 𝑔 and variables 𝜑
where 𝑔(𝜑) is constant for all observations (e.g. Cox PH (Section 11.1.2)), then predictions
of 𝜂 are a special case of predicting a relative risk, as are predictions of 𝜙(𝜂) if 𝜙 is rank
preserving. A higher prognostic index may imply a higher or lower risk of event, dependent
on the model structure.

Survival Distribution

Predicting a survival distribution refers specifically to predicting the distribution of an
individual patient’s survival time, i.e. modelling the distribution of the event occurring
over ℝ≥0. Therefore this is seen as the probabilistic analogue to the deterministic time-to-
event prediction, these definitions are motivated by similar terminology in machine learning
regression problems (Section 3.1). The above three prediction types can all be derived from
a probabilistic survival distribution prediction (Chapter 19).

A survival distribution is a mathematical object that is estimated by predicting a rep-
resentation of the distribution. Let 𝑊 be a continuous random variable t.v.i. ℝ≥0 with
probability density function (pdf), 𝑓𝑊 ∶ ℝ≥0 → ℝ≥0, and cumulative distribution function
(cdf), 𝐹𝑊 ∶ ℝ≥0 → [0, 1]; (𝜏) ↦ 𝑃(𝑊 ≤ 𝜏). The pdf, 𝑓𝑊 (𝜏), is the likelihood of an observa-
tion dying in a small interval around time 𝜏 , and 𝐹𝑊 (𝜏) = ∫𝜏

0 𝑓𝑊 (𝜏) is the probability of
an observation being dead at time 𝜏 (i.e. dying at or before 𝜏). In survival analysis, it is
generally more interesting to model the risk of the event taking place or the probability of
the patient being alive, leading to other distribution representations of interest.



Survival Analysis Task 25

The survival function is defined as

𝑆𝑊 ∶ ℝ≥0 → [0, 1]; (𝜏) ↦ 𝑃(𝑊 ≥ 𝜏) = ∫
∞

𝜏
𝑓𝑊 (𝑢) 𝑑𝑢

and so 𝑆𝑊 (𝜏) = 1 − 𝐹𝑊 (𝜏). This function is known as the survival function as it can be
interpreted as the probability that a given individual survives until some point 𝜏 ≥ 0.
Another common representation is the hazard function,

ℎ𝑊 ∶ ℝ≥0 → ℝ≥0; (𝜏) ↦ 𝑓𝑊 (𝜏)
𝑆𝑊 (𝜏)

The hazard function is interpreted as the instantaneous risk of death given that the obser-
vation has survived up until that point; note this is not a probability as ℎ𝑊 can be greater
than one.

The cumulative hazard function (chf) can be derived from the hazard function by

𝐻𝑊 ∶ ℝ≥0 → ℝ≥0; (𝜏) ↦ ∫
𝜏

0
ℎ𝑊 (𝑢) 𝑑𝑢

The cumulative hazard function relates simply to the survival function by

𝐻𝑊 (𝜏) = ∫
𝜏

0
ℎ𝑊 (𝑢) 𝑑𝑢 = ∫

𝜏

0

𝑓𝑊 (𝑢)
𝑆𝑊 (𝑢) 𝑑𝑢 = ∫

𝜏

0
−𝑆′

𝑊 (𝑢)
𝑆𝑊 (𝑢) 𝑑𝑢 = − log(𝑆𝑊 (𝜏))

Any of these representations may be predicted conditionally on covariates for an individual
by a probabilistic survival distribution prediction. Once a function has been estimated,
predictions can be made conditional on the given data. For example if 𝑛 survival functions
are predicted, ̂𝑆1, ..., ̂𝑆𝑛, then ̂𝑆𝑖 is interpreted as the predicted survival function given
covariates of observation 𝑖, and analogously for the other representation functions.

4.4 Survival Analysis Task
The survival prediction problems identified in (Section 4.3) are now formalised as machine
learning tasks.

Survival Task

Box 4.1. Let (𝑋, 𝑇 , Δ) be random variables t.v.i. 𝒳 × 𝒯 × {0, 1} where 𝒳 ⊆ ℝ𝑝 and
𝒯 ⊆ ℝ≥0. Let 𝒮 ⊆ Distr(𝒯) be a convex set of distributions on 𝒯 and let ℛ ⊆ ℝ. Then,

• The probabilistic survival task is the problem of predicting a conditional distribution
over the positive Reals and is specified by 𝑔 ∶ 𝒳 → 𝒮.

• The deterministic survival task is the problem of predicting a continuous value in
the positive Reals and is specified by 𝑔 ∶ 𝒳 → 𝒯.

• The survival ranking task is specified by predicting a continuous ranking in the Reals
and is specified by 𝑔 ∶ 𝒳 → ℛ.

The estimated prediction functional ̂𝑔 is fit on training data
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\(𝑋1, 𝑇1, Δ1), ..., (𝑋𝑛, 𝑇𝑛, Δ𝑛) 𝑖.𝑖.𝑑.∼ (𝑋, 𝑇 , Δ) and is considered ‘good’ if
\𝔼[𝐿(𝑇 ∗, Δ∗, ̂𝑔(𝑋∗))] is low, where (𝑋∗, 𝑇 ∗, Δ∗) ∼ (𝑋, 𝑇 , Δ) is independent of
(𝑋1, 𝑇1, Δ1), ..., (𝑋𝑛, 𝑇𝑛, Δ𝑛) and ̂𝑔.

Any other survival prediction type falls within one of these tasks above, for example pre-
dicting log-survival time is the deterministic task and predicting prognostic index or linear
predictor is the ranking task. Removing the separation between the prognostic index and
ranking prediction types is due to them both making predictions over the Reals; their math-
ematical difference lies in interpretation only. In general, the survival task will assume
that 𝒯 ⊆ ℝ≥0, and the terms ‘discrete’ or ‘reduced survival task’ will refer to the case
when 𝒯 ⊆ ℕ>0. Unless otherwise specified, the ‘survival task’, will be used to refer to the
probabilistic survival task.2

Survival Analysis and Regression

Survival and regression tasks are closely related as can be observed from their respective
definitions. Both are specified by 𝑔 ∶ 𝒳 → 𝒮 where for probabilistic regression 𝒮 ⊆ Distr(ℝ)
and for survival 𝒮 ⊆ Distr(ℝ≥0). Furthermore both settings can be viewed to use the same
generative process. In the survival setting in which there is no censoring then data is drawn
from (𝑋, 𝑌 ) 𝑡.𝑣.𝑖. 𝒳×𝒯, 𝒯 ⊆ ℝ≥0 and in regression from (𝑋, 𝑌 ) 𝑡.𝑣.𝑖. 𝒳×𝒴, 𝒴 ⊆ ℝ, so that
the only difference is whether the outcome data ranges over the Reals or positive Reals.

These closely related tasks are discussed in more detail in (Chapter 19), with a particular
focus on how the more popular regression setting can be used to solve survival tasks. In
(?@sec-review) the models are first introduced in a regression setting and then the adapta-
tions to survival are discussed, which is natural when considering that historically machine
learning survival models have been developed by adapting regression models.

2These definitions are given in the most general case where the time variable is over ℝ≥0. In practice, all
models instead assume time is over ℝ>0 and any death at 𝑇𝑖 = 0 is set to 𝑇𝑖 = 𝜖 for some very small 𝜖 ∈ ℝ>0.
Analogously for the discrete survival task. This assumption may not reflect reality as a patient could die at
the study start however models cannot typically include this information in training.
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What are Survival Measures?

TODO (150-200 WORDS)

Minor changes expected!

This page is a work in progress and minor changes will be made over time.

In this part of the book we discuss one of the most important parts of the machine learning
workflow, model evaluation (Foss and Kotthoff 2024). In the next few chapters we will
discuss different metrics that can be used to measure a model’s performance but before
that we will just briefly discuss why model evaluation is so important.

In the simplest case, without evaluation there is no way to know if predictions from a
trained machine learning model are any good. Whether one uses a simple Kaplan-Meier
estimator, a complex neural network, or anything in between, there is no guarantee any
of these methods will actually make useful predictions for a given dataset. This could be
because the dataset is inherently difficult for any model to be trained on, perhaps because
it is very ‘noisy’, or because a model is simply ill-suited to the task, for example using a Cox
Proportional Hazards model when its key assumptions are violated. Evaluation is therefore
crucial to trusting any predictions made from a model.

5.1 Survival Measures
Evaluation can be used to assess in-sample and out-of-sample performance.

In-sample evaluation measures the quality of a model’s ‘fit’ to data, i.e., whether the model
has accurately captured relationships in the training data. However, in-sample measures
often cannot be applied to complex machine learning models so this part of the book omits
these measures. Readers who are interested in this are are directed to Collett (2014) and
Hosmer Jr, Lemeshow, and May (2011) for discussion on residuals; Choodari-Oskooei, Roys-
ton, and Parmar (2012), Kent and O’Quigley (1988) and Patrick Royston and Sauerbrei
(2004) for 𝑅2 type measures; and finally Volinsky and Raftery (2000), Hurvich and Tsai
(1979), and Liang and Zou (2008) for information criterion measures.

Out-of-sample measures evaluate the quality of model predictions on new and previously
unseen (by the model) data. By following established statistical methods for evaluation, and
ensuring that robust resampling methods are used (James et al. 2013), evaluation provides
a method for estimating the ‘generalisation error’, which is the expected model performance

29
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on new datasets. This is an important concept as it provides confidence about future model
performance without limiting results to the current data. Survival measures are classified
into measures of:

• Discrimination (aka ‘separation’) – A model’s discriminatory power refers to how well it
separates observations that are at a higher or lower risk of event. For example, a model
with good discrimination will predict that (at a given time) a dead patient has a higher
probability of being dead than an alive patient.

• Calibration – Calibration is a roughly defined concept (Collins et al. 2014; F. E. Harrell,
Lee, and Mark 1996; Rahman et al. 2017; Van Houwelingen 2000) that generally refers to
how well a model captures average relationships between predicted and observed values.

• Predictive Performance – A model is said to have good predictive performance (or some-
times ‘predictive accuracy’) if its predictions for new data are ‘close to’ the truth.

These measures could also be categorised into how they evaluate predictions. Discrimination
measures compare predictions pairwise where pairs of observations are created and then the
predictions for these pairs are compared within and across each other in some way. Cali-
bration measures evaluate predictions holistically by looking at some ‘average’ performance
across them to provide an idea of how well suited the model is to the data. Measures of
predictive performance evaluate individual predictions and usually take the sample mean
of these to estimate the generalisation error.

In the next few chapters we categorise measures by the type of survival prediction they
evaluate, which is a more natural taxonomy for selecting measures, but we use the above
categories when introducing each measure.

5.2 How are Models Evaluated?
As well as using measures to evaluate a model’s performance on a given dataset, evaluation
can also be used to measure future performance, to compare and select models, and to tune
internal processes. In most cases, models should not be trained/predicted/evaluated on their
own, instead a number of simpler reference models should be simultaneously trained and
evaluated on the same data, which is known as a ‘benchmark experiment’. This is especially
important for survival models, as all survival measures depend on the censoring distribution
and therefore cannot be interpreted out of context and without comparison to other models.
Benchmark experiments are used to empirically compare models across the same data and
measures, meaning that if one model outperforms another then that model can be selected
for future experiments (though simpler models are preferred if the performance difference
is marginal). A model is usually said to ‘outperform’ another if it has a lower generalisation
error.

The process of model evaluation is dependent on the measure itself. Measures that are ‘de-
composable’ (predictive performance measures) calculate scores for individual predictions
and take the sample mean over all scores, on the other hand ‘aggregate’ measures (discrim-
ination and calibration) return a single score over all predictions. The simplest method to
estimate the generalisation error is ‘holdout’ resampling, where a dataset 𝒟 is split into non-
overlapping subsets for training 𝒟𝑡𝑟𝑎𝑖𝑛 and testing 𝒟𝑡𝑒𝑠𝑡. The model is trained on 𝒟𝑡𝑟𝑎𝑖𝑛
and predictions, ŷ are made based on the features in 𝒟𝑡𝑒𝑠𝑡. The model is evaluated by using
a measure, 𝐿, to compare the predictions to the observed data in the test set, 𝐿(y𝑡𝑒𝑠𝑡, ŷ).
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Where possible, (repeated) k-fold cross-validation (kCV) should be used for more robust
estimation of the generalisation error and for model comparison. In kCV, the data is par-
titioned into 𝑘 folds (often 𝑘 is 5 or 10), which are non-overlapping subsets. A model is
trained on 𝑘 − 1 folds and evaluated on the 𝑘th fold, this process is repeated until each of
the 𝑘 folds has acted as the test set exactly once, the computed loss from each iteration is
averaged into the final loss, which provides a good estimate of the generalisation error.

For the rest of this part of the book we will introduce different survival measures, discuss
their advantages and disadvantages, and in Chapter 10 we will provide some recommenda-
tions for choosing measures. We will not discuss the general process of model resampling
or evaluation further but recommend Casalicchio and Burk (2024) to readers interested in
this topic.
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TODO (150-200 WORDS)

Minor changes expected!

This page is a work in progress and minor changes will be made over time.

The next measures discused are ‘discrimination measures’, which evaluate how well models
separate observations into different risk groups. A model is said to have good discrimination
if it correctly predicts that one observation is at higher risk of the event of interest than
another, where the prediction is ‘correct’ if the observation predicted to be at higher risk
does indeed experience the event sooner.

In the survival setting, the ‘risk’ is taken to be the continuous ranking prediction. All
discrimination measures are ranking measures, which means that the exact predicted value is
irrelevant, only its relative ordering is required. For example given predictions {100, 2, 299.3},
only their rankings, {2, 1, 3}, are used by measures of discrimination.

This chapter begins with time-independent measures (Section 6.1), which measure con-
cordance between pairs of observations at a single observed time point. The next section
focuses on time-dependent measures (Section 6.2), which are primarily AUC-type measures
that evaluate discrimination over all possible unique time-points and integrate the results
for a single metric.

6.1 Time-Independent Measures
The simplest form of discrimination measures are concordance indices, which, in general,
measure the proportion of cases in which the model correctly ranks a pair of observations ac-
cording to their risk. These measures may be best understood in terms of two key definitions:
‘comparable’, and ‘concordant’.

Definition 6.1 (Concordance). Let (𝑖, 𝑗) be a pair of observations with outcomes
{(𝑡𝑖, 𝛿𝑖), (𝑡𝑗, 𝛿𝑗)} and let 𝑟𝑖, 𝑟𝑗 ∈ ℝ be their respective risk predictions. Then (𝑖, 𝑗) are called
(F. E. J. Harrell et al. 1984; F. E. Harrell, Califf, and Pryor 1982):

• Comparable if 𝑡𝑖 < 𝑡𝑗 and 𝛿𝑖 = 1;
• Concordant if 𝑟𝑖 > 𝑟𝑗.

33
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Note that this book defines risk rankings such that a higher value implies higher risk of
event and thus lower expected survival time (Section 4.3), hence a pair is concordant if
𝕀(𝑡𝑖 < 𝑡𝑗, 𝑟𝑖 > 𝑟𝑗). Other sources may instead assume that higher values imply lower risk of
event and hence a pair would be concordant if 𝕀(𝑡𝑖 < 𝑡𝑗, 𝑟𝑖 < 𝑟𝑗).
Concordance measures then estimate the probability of a pair being concordant, given that
they are comparable:

𝑃(𝑟𝑖 > 𝑟𝑗|𝑡𝑖 < 𝑡𝑗 ∩ 𝛿𝑖)

These measures are referred to as time independent when 𝑟𝑖, 𝑟𝑗 is not a function of time as
once the observations are organised into comparable pairs, the observed survival times can
be ignored. The time-dependent case is covered in Section 6.2.1.

While various definitions of a ‘Concordance index’ (C-index) exist (discussed in the next
section), they all represent a weighted proportion of the number of concordant pairs over
the number of comparable pairs. As such, a C-index value will always be between [0, 1]
with 1 indicating perfect separation, 0.5 indicating no separation, and 0 being separation
in the ‘wrong direction’, i.e. all high risk observations being ranked lower than all low risk
observations.

Concordance measures may either be reported as a value in [0, 1], a percentage, or as ‘dis-
criminatory power’, which refers to the percentage improvement of a model’s discrimination
above the baseline value of 0.5. For example, if a model has a concordance of 0.8 then its
discriminatory power is (0.8 − 0.5)/0.5 = 60%. This representation of discrimination pro-
vides more information by encoding the model’s improvement over some baseline although
is often confused with reporting concordance as a percentage (e.g. reporting a concordance
of 0.8 as 80%). In theory this representation could result in a negative value, however this
would indicate that 𝐶 < 0.5, which would indicate serious problems with the model that
should be addressed before proceeding with further analysis. Representing measures as a
percentage over a baseline is a common method to improve measure interpretability and
closely relates to the ERV representation of scoring rules.

� Learn more about baseline comparison

See Section 8.4 to learn more about calculating measures with respect to an arbitrary
baseline.

6.1.1 Concordance Indices
Common concordance indices in survival analysis can be expressed as a general measure:

Let ̂𝑟 = ( ̂𝑟1 ̂𝑟2 ⋯ ̂𝑟𝑚)⊤ be predicted risks, (t, 𝛿) = ((𝑡1, 𝛿1) (𝑡2, 𝛿2) ⋯ (𝑡𝑚, 𝛿𝑚))⊤ be observed
outcomes, let 𝑊 be some weighting function, and let 𝜏 be a cut-off time. Then, the time-
independent (‘ind’) survival concordance index is defined by,

𝐶𝑖𝑛𝑑( ̂r, t, 𝛿|𝜏) =
∑𝑖≠𝑗 𝑊(𝑡𝑖)𝕀(𝑡𝑖 < 𝑡𝑗, ̂𝑟𝑖 > ̂𝑟𝑗, 𝑡𝑖 < 𝜏)𝛿𝑖

∑𝑖≠𝑗 𝑊(𝑡𝑖)𝕀(𝑡𝑖 < 𝑡𝑗, 𝑡𝑖 < 𝜏)𝛿𝑖

The choice of 𝑊 specifies a particular variation of the c-index (see below). The use of the
cut-off 𝜏 mitigates against decreased sample size (and therefore high variance) over time
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due to the removal of censored observations (see Figure 6.1)). For 𝜏 to be comparable across
datasets, a common choice would be to set 𝜏 as the time at which 80%, or perhaps 90% of
the data have been censored or experienced the event.

There are multiple methods for dealing with tied predictions and times. Strictly, tied times
are incomparable given the definition of ‘comparable’ given above and hence are usually
ignored in the numerator. On the other hand, ties in the prediction are more problematic
but a common method is to set a value of 0.5 for observations when 𝑟𝑖 = 𝑟𝑗 (Therneau and
Atkinson 2020). Specific concordance indices can be constructed by assigning a weighting
scheme for 𝑊 which generally depends on the Kaplan-Meier estimate of the survival func-
tion of the censoring distribution fit on training data, ̂𝐺𝐾𝑀 , or the Kaplan-Meier estimate
for the survival function of the survival distribution fit on training data, ̂𝑆𝐾𝑀 , or both. Mea-
sures that use ̂𝐺𝐾𝑀 are referred to as Inverse Probability of Censoring Weighted (IPCW)
measures as the estimated censoring distribution is utilised to weight the measure in order
to compensate for removed censored observations. This is visualised in Figure 6.1 where

̂𝐺𝐾𝑀 , ̂𝐺−2
𝐾𝑀 , and ̂𝑆𝐾𝑀 are computed based on the whas dataset (Hosmer Jr, Lemeshow,

and May 2011).
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Figure 6.1: Weighting functions obtained on the whas dataset. x-axis is follow-up time. y-
axis is outputs from one of three weighting functions: ̂𝐺𝐾𝑀 , survival function based on the
censoring distribution of the whas dataset (red), and ̂𝐺−2

𝐾𝑀 (green), ̂𝑆𝐾𝑀 , marginal survival
function based on original whas dataset (blue), . The vertical gray line at 𝑡 = 𝜏 = 1267
represents the point at which ̂𝐺(𝑡) < 0.6.

The following weights have been proposed for the concordance index:

• 𝑊(𝑡𝑖) = 1: Harrell’s concordance index, 𝐶𝐻 (F. E. J. Harrell et al. 1984; F. E. Harrell,
Califf, and Pryor 1982), which is widely accepted to be the most common survival measure
and imposes no weighting on the definition of concordance. The original measure given
by Harrell has no cut-off, 𝜏 = ∞, however applying a cut-off is now more widely accepted
in practice.

• 𝑊(𝑡𝑖) = [ ̂𝐺𝐾𝑀(𝑡𝑖)]−2: Uno’s C, 𝐶𝑈 (Uno et al. 2011).
• 𝑊(𝑡𝑖) = [ ̂𝐺𝐾𝑀(𝑡𝑖)]−1
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• 𝑊(𝑡𝑖) = ̂𝑆𝐾𝑀(𝑡𝑖)
• 𝑊(𝑡𝑖) = ̂𝑆𝐾𝑀(𝑡𝑖)/ ̂𝐺𝐾𝑀(𝑡𝑖)
All methods assume that censoring is conditionally-independent of the event given the
features (Section 4.1.2), otherwise weighting by ̂𝑆𝐾𝑀 or ̂𝐺𝐾𝑀 would not be applicable. It
is assumed here that ̂𝑆𝐾𝑀 and ̂𝐺𝐾𝑀 are estimated on the training data and not the testing
data (though the latter may be seen in some implementations, e.g. Therneau (2015)).

6.1.2 Choosing a C-index
With multiple choices of weighting available, choosing a specific measure might seem daunt-
ing. Matters are only made worse by debate in the literature, reflecting uncertainty in
measure choice and interpretation. In practice, when a suitable cut-of 𝜏 is chosen, all these
weightings perform very similarly (Rahman et al. 2017; Schmid and Potapov 2012). For
example, Table 6.1 uses the whas data again to compare Harrell’s C with measures that
include IPCW weighting, when no cutoff is applied (top row) and when a cutoff is applied
when ̂𝐺(𝑡) = 0.6 (grey line in Figure 6.1). The results are almost identical when the cutoff
is applied but still not massively different without the cutoff.

Table 6.1: Comparing C-index measures (calculated on the whas dataset using a Cox model
with three-fold cross-validation) with no cut-off (top) and a cut-off when ̂𝐺(𝑡) = 0.6 (bot-
tom). First column is Harrell’s C, second is the weighting 1/ ̂𝐺(𝑡), third is Uno’s C.

W=1 W=G^-1 W=G^-2
tau=Inf 0.74 0.73 0.71
tau=1267 0.76 0.75 0.75

On the other hand, if a poor choice is selected for 𝜏 (cutting off too late) then IPCW
measures can be highly unstable (Rahman et al. 2017), for example the variance of Uno’s
C drastically increases with increased censoring (Schmid and Potapov 2012).

In practice, all C-index metrics provide an intuitive measure of discrimination and as such
the choice of C-index is less important than the transparency in reporting. ‘C-hacking’ (R.
Sonabend, Bender, and Vollmer 2022) is the deliberate, unethical procedure of calculating
multiple C-indices and to selectively report one or more results to promote a particular
model or result, whilst ignoring any negative findings. For example, calculating Harrell’s C
and Uno’s C but only reporting the measure that shows a particular model of interest is
better than another (even if the other metric shows the reverse effect). To avoid ‘C-hacking’:

i) the choice of C-index should be made before experiments have begun and the
choice of C-index should be clearly reported;

ii) when ranking predictions are composed from distribution predictions, the com-
position method should be chosen and clearly described before experiments have
begun.

As the C-index is highly dependent on censoring within a dataset, C-index values between
experiments are not directly comparable, instead comparisons are limited to comparing
model rankings, for example conclusions such as “model A outperformed model B with
respect to Harrell’s C in this experiment”.
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� Learn about distribution to ranking compositions.

See Section 19.4 to learn more about creating ranking predictions from distribution
predictions using composition.

6.2 Time-Dependent Measures
In the time-dependent case, where the metrics are computed based on specific survival times,
the majority of measures are based on the Area Under the Curve, with one exception which
is a simpler concordance index.

6.2.1 Concordance Indices
In contrast to the measures described above, Antolini’s C (Antolini, Boracchi, and Biganzoli
2005) provides a time-dependent (‘dep’) formula for the concordance index. The definition
of ‘comparable’ is the same for Antolini’s C, however, concordance is now determined using
the individual predicted survival probabilities calculated at the smaller event time in the
pair:

𝑃( ̂𝑆𝑖(𝑡𝑖) < ̂𝑆𝑗(𝑡𝑖)|𝑡𝑖 < 𝑡𝑗 ∩ 𝛿𝑖)

Note that observations are concordant when ̂𝑆𝑖(𝑡𝑖) < ̂𝑆𝑗(𝑡𝑖) as at the time 𝑡𝑖, observation 𝑖
has experienced the event and observation 𝑗 has not, hence the expected survival probability
for ̂𝑆𝑖(𝑡𝑖) should be as close to 0 as possible (noting inherent randomness may prevent the
perfect ̂𝑆𝑖(𝑡𝑖) = 0 prediction) but otherwise should be less than ̂𝑆𝑗(𝑡𝑖) as 𝑗 is still ‘alive’.
Once again this probability is estimated with a metric that could include a cut-off and
different weighting schemes (though this is not included in Antolini’s original definition):

𝐶𝑑𝑒𝑝(Ŝ, t, 𝛿|𝜏) =
∑𝑖≠𝑗 𝑊(𝑡𝑖)𝕀(𝑡𝑖 < 𝑡𝑗, ̂𝑆𝑖(𝑡𝑖) < ̂𝑆𝑗(𝑡𝑖), 𝑡𝑖 < 𝜏)𝛿𝑖

∑𝑖≠𝑗 𝑊(𝑡𝑖)𝕀(𝑡𝑖 < 𝑡𝑗, 𝑡𝑖 < 𝜏)𝛿𝑖

where ̂𝑆 = ( ̂𝑆1 ̂𝑆2 ⋯ ̂𝑆𝑚)⊤.

Antolini’s C provides an intuitive method to evaluate the discrimination of a model based
on distribution predictions without depending on compositions to ranking predictions.

6.2.2 Area Under the Curve

Warning

We are still discussing how to structure and write this section so the contents are all
subject to change. The text below is ‘correct’ but we want to add more detail about
estimation of AUC so the book can be more practical, otherwise we may remove the
section completely, let us know your thoughts about what you’d like to see here!
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AUC, or AUROC, measures calculate the Area Under the Receiver Operating Character-
istic (ROC) Curve, which is a plot of the sensitivity (or true positive rate (TPR)) against
1 − specificity (or true negative rate (TNR)) at varying thresholds (described below) for the
predicted probability (or risk) of event. Figure 6.2 visualises ROC curves for two classifica-
tion models. The blue line is a featureless baseline that has no discrimination. The red line
is a decision tree with better discrimination as it comes closer to the top-left corner.

Figure 6.2: ROC Curves for a classification example. Red is a decision tree with good discrim-
ination as it ‘hugs’ the top-left corner. Blue is a featureless baseline with no discrimination
as it sits on 𝑦 = 𝑥.

In a classification setting with no censoring, the AUC has the same interpretation as Har-
rell’s C (Uno et al. 2011). AUC measures for survival analysis were developed to provide a
time-dependent measure of discriminatory ability (Patrick J. Heagerty, Lumley, and Pepe
2000). In a survival setting it can reasonably be expected for a model to perform differently
over time and therefore time-dependent measures are advantageous. Computation of AUC
estimators is complex and as such there are limited accessible metrics available off-shelf.
There is limited evidence of these estimators used in the literature, hence discussion of
these measures is kept brief.

The AUC, TPR, and TNR are derived from the confusion matrix in a binary classification
setting. Let 𝑏𝑖, ̂𝑏𝑖 ∈ {0, 1} be the true and predicted binary outcomes respectively for some
observation 𝑖. The confusion matrix is then given by:

𝑏𝑖 = 1 𝑏𝑖 = 0
̂𝑏𝑖 = 1 TP FP
̂𝑏𝑖 = 0 FN TN

where 𝑇 𝑁 ∶= ∑𝑖 𝕀(𝑏𝑖 = 0, ̂𝑏𝑖 = 0) is the number of true negatives, 𝑇 𝑃 ∶= ∑𝑖 𝕀(𝑏𝑖 = 1, ̂𝑏𝑖 = 1)
is the number true positives, 𝐹𝑃 ∶= ∑𝑖 𝕀(𝑏𝑖 = 0, ̂𝑏𝑖 = 1) is the number of false positives,
and 𝐹𝑁 ∶= ∑𝑖 𝕀(𝑏𝑖 = 1, ̂𝑏𝑖 = 0) is the number of false negatives. From these are derived
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𝑇 𝑃𝑅 ∶= 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁 (6.1)

𝑇 𝑁𝑅 ∶= 𝑇 𝑁
𝑇 𝑁 + 𝐹𝑃 (6.2)

In classification, a probabilistic prediction of an event can be thresholded to obtain a deter-
ministic prediction. For a predicted ̂𝑝 ∶= ̂𝑃 (𝑏 = 1), and threshold 𝛼, the thresholded binary
prediction is ̂𝑏 ∶= 𝕀( ̂𝑝 > 𝛼). This is achieved in survival analysis by thresholding the linear
predictor at a given time for different values of the threshold and different values of the time.
All measures of TPR, TNR and AUC are in the range [0, 1] with larger values preferred.

Weighting the linear predictor was proposed by Uno et al. (2007) (Uno et al. 2007) and
provides a method for estimating TPR and TNR via

𝑇 𝑃 𝑅𝑈( ̂𝜂, t, 𝛿|𝜏 , 𝛼) = ∑𝑚
𝑖=1 𝛿𝑖𝕀(𝑘( ̂𝜂𝑖) > 𝛼, 𝑡𝑖 ≤ 𝜏)[ ̂𝐺𝐾𝑀(𝑡𝑖)]−1

∑𝑚
𝑖=1 𝛿𝑖𝕀(𝑡𝑖 ≤ 𝜏)[ ̂𝐺𝐾𝑀(𝑡𝑖)]−1

and

𝑇 𝑁𝑅𝑈( ̂𝜂, t|𝜏 , 𝛼) ↦ ∑𝑚
𝑖=1 𝕀(𝑘( ̂𝜂𝑖) ≤ 𝛼, 𝑡𝑖 > 𝜏)

∑𝑚
𝑖=1 𝕀(𝑡𝑖 > 𝜏)

where ̂𝜂 = ( ̂𝜂1 ̂𝜂2 ⋯ ̂𝜂𝑚)⊤ is a vector of predicted linear predictors, 𝜏 is the time at which
to evaluate the measure, 𝛼 is a cut-off for the linear predictor, and 𝑘 is a known, strictly
increasing, differentiable function. 𝑘 is chosen depending on the model choice, for example
if the fitted model is PH then 𝑘(𝑥) = 1 − exp(− exp(𝑥)) (Uno et al. 2007). Similarities
can be drawn between these equations and Uno’s concordance index, in particular the use
of IPCW. Censoring is again assumed to be at least random once conditioned on features.
Plotting 𝑇 𝑃𝑅𝑈 against 1 − 𝑇 𝑁𝑅𝑈 for varying values of 𝛼 provides the ROC.

The second method, which appears to be more prominent in the literature, is derived from
Heagerty and Zheng (2005) (Patrick J. Heagerty and Zheng 2005). They define four distinct
classes, in which observations are split into controls and cases.

An observation is a case at a given time-point if they are dead, otherwise they are a control.
These definitions imply that all observations begin as controls and (hypothetically) become
cases over time. Cases are then split into incident or cumulative and controls are split into
static or dynamic. The choice between modelling static or dynamic controls is dependent on
the question of interest. Modelling static controls implies that a ‘subject does not change
disease status’ (Patrick J. Heagerty and Zheng 2005), and few methods have been developed
for this setting (Kamarudin, Cox, and Kolamunnage-Dona 2017), as such the focus here is on
dynamic controls. The incident/cumulative cases choice is discussed in more detail below.1

The TNR for dynamic cases is defined as

1All measures discussed in this section evaluate model discrimination from ‘markers’, which may be a
predictive marker (model predictions) or a prognostic marker (a single covariate). This section always defines
a marker as a ranking prediction, which is valid for all measures discussed here with the exception of one
given at the end.
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𝑇 𝑁𝑅𝐷( ̂r, 𝑁|𝛼, 𝜏) = 𝑃( ̂𝑟𝑖 ≤ 𝛼|𝑁𝑖(𝜏) = 0)
where ̂𝑟 = ( ̂𝑟1 ̂𝑟2 ⋯ ̂𝑟𝑛)⊤ is some deterministic prediction and 𝑁(𝜏) is a count of the number
of events in [0, 𝜏). Heagerty and Zheng further specify 𝑦 to be the predicted linear predictor
̂𝜂. Cumulative/dynamic and incident/dynamic measures are available in software packages

‘off-shelf’, these are respectively defined by

𝑇 𝑃𝑅𝐶( ̂r, 𝑁|𝛼, 𝜏) = 𝑃( ̂𝑟𝑖 > 𝛼|𝑁𝑖(𝜏) = 1)
and

𝑇 𝑃𝑅𝐼( ̂r, 𝑁|𝛼, 𝜏) = 𝑃( ̂𝑟𝑖 > 𝛼|𝑑𝑁𝑖(𝜏) = 1)
where 𝑑𝑁𝑖(𝜏) = 𝑁𝑖(𝜏) − 𝑁𝑖(𝜏−). Practical estimation of these quantities is not discussed
here.

The choice between the incident/dynamic (I/D) and cumulative/dynamic (C/D) measures
primarily relates to the use-case. The C/D measures are preferred if a specific time-point is
of interest (Patrick J. Heagerty and Zheng 2005) and is implemented in several applications
for this purpose (Kamarudin, Cox, and Kolamunnage-Dona 2017). The I/D measures are
preferred when the true survival time is known and discrimination is desired at the given
event time (Patrick J. Heagerty and Zheng 2005).

Defining a time-specific AUC is now possible with

𝐴𝑈𝐶( ̂r, 𝑁|𝜏) = ∫
1

0
𝑇 𝑃𝑅( ̂r, 𝑁|1 − 𝑇 𝑁𝑅−1(𝑝|𝜏), 𝜏) 𝑑𝑝

Finally, integrating over all time-points produces a time-dependent AUC and as usual a
cut-off is applied for the upper limit,

𝐴𝑈𝐶∗( ̂r, 𝑁|𝜏∗) = ∫
𝜏∗

0
𝐴𝑈𝐶( ̂r, 𝑁|𝜏)2 ̂𝑝𝐾𝑀(𝜏) ̂𝑆𝐾𝑀(𝜏)

1 − ̂𝑆2
𝐾𝑀(𝜏∗)

𝑑𝜏

where ̂𝑆𝐾𝑀 , ̂𝑝𝐾𝑀 are survival and mass functions estimated with a Kaplan-Meier model on
training data.

Since Heagerty and Zheng’s paper, other methods for calculating the time-dependent AUC
have been devised, including by Chambless and Diao (Chambless and Diao 2006), Song
and Zhou (Song and Zhou 2008), and Hung and Chiang (Hung and Chiang 2010). These
either stem from the Heagerty and Zheng paper or ignore the case/control distinction and
derive the AUC via different estimation methods of TPR and TNR. Blanche et al. (2012)
(Blanche, Latouche, and Viallon 2012) surveyed these and concluded ‘’regarding the choice
of the retained definition for cases and controls, no clear guidance has really emerged in
the literature’‘, but agree with Heagerty and Zeng on the use of C/D for clinical trials
and I/D for ’pure’ evaluation of the marker. Blanche et al. (2013) (Blanche, Dartigues, and
Jacqmin-Gadda 2013) published a survey of C/D AUC measures with an emphasis on non-
parametric estimators with marker-dependent censoring, including their own Conditional
IPCW (CIPCW) AUC, which is not discussed further here as it cannot be used for evaluating
predictions (R. E. B. Sonabend 2021).
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Reviews of AUC measures have produced (sometimes markedly) different results (Blanche,
Latouche, and Viallon 2012; Li, Greene, and Hu 2018; Kamarudin, Cox, and Kolamunnage-
Dona 2017) with no clear consensus on how and when these measures should be used.
The primary advantage of these measures is to extend discrimination metrics to be time-
dependent. However, it is unclear how to interpret a threshold of a linear predictor and
moreover if this is even the ‘correct’ quantity to threshold, especially when survival distri-
bution predictions are the more natural object to evaluate over time.





7
Calibration Measures
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Calibration measures evaluate the ‘average’ quality of survival distribution predictions. This
chapter is kept relatively short as the literature in this area is scarce (Rahman et al. 2017),
this is likely due to the meaning of calibration being unclear in a survival context (Van
Houwelingen 2000). However the meaning of calibration is better specified once specific
metrics are introduced. As with other measure classes, only measures that can generalise
beyond Cox PH models are included here but note that several calibration measures for
re-calibrating PH models have been discussed in the literature (Demler, Paynter, and Cook
2015; Van Houwelingen 2000).

Calibration measures can be grouped (Andres et al. 2018) into those that evaluate distri-
butions at a single time-point, ‘1-Calibration’ or ‘Point Calibration’ measures, and those
that evaluate distributions at all time-points ‘distributional-calibration’ or ‘probabilistic
calibration’ measures. A point-calibration measure will evaluate a function of the predicted
distribution at a single time-point whereas a probabilistic measure evaluates the distribu-
tion over a range of time-points; in both cases the evaluated quantity is compared to the
observed outcome, (𝑡, 𝛿).

7.1 Point Calibration
Point calibration measures can be further divided into metrics that evaluate calibration at
a single time-point (by reduction) and measures that evaluate an entire distribution by only
considering the event time. The difference may sound subtle but it affects conclusions that
can be drawn. In the first case, a calibration measure can only draw conclusions at that
one time-point, whereas the second case can draw conclusions about the calibration of the
entire distribution. This is the same caveat as using prediction error curves for scoring rules.

� Learn more about prediction error curves

See Section 8.3 to learn more about prediction error curves.
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7.1.1 Calibration by Reduction
Point calibration measures are implicitly reduction methods as they use classification meth-
ods to evaluate a full distribution based on a single point only. For example, given a pre-
dicted survival function ̂𝑆, one could calculate the survival function at a single time point,

̂𝑆𝜏 and then use probabilistic classification calibration measures. Using this approach one
may employ common calibration methods such as the Hosmer–Lemeshow test (Hosmer and
Lemeshow 1980). Measuring calibration in this way can have significant drawbacks as a
model may be well-calibrated at one time-point but poorly calibrated at all others (Haider
et al. 2020). To mitigate this, one could perform the Hosmer–Lemeshow test (or other
applicable tests) multiple times with multiple testing correction at many (or all possible)
time points, however this would be less efficient and more difficult to interpret than other
measures discussed in this chapter.

� Learn more about reduction

See Chapter 19 to learn more about reduction.

7.1.2 Houwelingen’s 𝛼
As opposed to evaluating distributions at one or more arbitrary time points, one could
instead evaluate distribution predictions at meaningful times. van Houwelingen proposed
several measures (Van Houwelingen 2000) for calibration but only one generalises to all
probabilistic survival models, termed here ‘Houwelingen’s 𝛼’. The measure assesses if the
model correctly estimates the theoretical ‘true’ cumulative hazard function of the underlying
data generating process, 𝐻 = 𝐻̂.

The statistic is derived by noting the closely related nature of survival analysis and counting
processes, and exploiting the fact that the sum of the cumulative hazard function is an
estimate for the number of events in a given time-period (Hosmer Jr, Lemeshow, and May
2011). As this result is often surprising result to readers, below is a short experiment using
R that demonstrates how the sum of the cumulative hazard estimated by a Kaplan-Meier
estimator is identical to the number of randomly simulated deaths in a dataset:

set.seed(42)
library(survival)

event = rbinom(100, 1, 0.7)
times = runif(100)
H = survfit(Surv(times, event) ~ 1)$cumhaz
sum(event) / sum(H)
#> [1] 1

Houwelingen’s 𝛼 is then defined by substituting 𝐻 for the observed total number of deaths
and summing over all predictions:

𝐻𝛼(𝛿, Ĥ, t) = ∑𝑖 𝛿𝑖
∑𝑖 Ĥ𝑖(𝑡𝑖)

with standard error 𝑆𝐸(𝐻𝛼) = exp(1/√∑𝑖 𝛿𝑖). A model is well-calibrated with respect to



Probabilistic Calibration 45

𝐻𝛼 if 𝐻𝛼 = 1.
The next metrics we look at evaluate models across a spectrum of points to assess calibration
over time.

7.2 Probabilistic Calibration
Calibration over a range of time points may be assessed quantitatively or qualitatively,
with graphical methods often favoured. Graphical methods compare the average predicted
distribution to the expected distribution, which can be estimated with the Kaplan-Meier
curve, discussed next.

7.2.1 Kaplan-Meier Comparison
The simplest graphical comparison compares the average predicted survival curve to the
Kaplan-Meier curve estimated on the testing data. Let ̂𝑆1, ..., ̂𝑆𝑚 be predicted survival
functions, then the average predicted survival function is the mixture: ̄ ̂𝑆 = 1

𝑚 ∑𝑚
𝑖=1

̂𝑆𝑖(𝜏).
This estimate can be plotted next to the Kaplan-Meier estimate of the survival distribution
in a test dataset (i.e., the true data for model evaluation), allowing for visual comparison
of how closely these curves align. An example is given in Figure 7.1, a Cox model (CPH),
random survival forest, and relative risk tree with distribution composition, are all compared
to the Kaplan-Meier estimator. This figure highlights the advantages and disadvantages of
this method. The relative risk tree is clearly poorly calibrated as it increasingly diverges
from the Kaplan-Meier. In contrast, the Cox model and random forest cannot be directly
compared to one another, as both models frequently overlap with each other and the Kaplan-
Meier estimator. Hence it is possible to say that the Cox and forests models are better
calibrated than the risk tree, however it is not possible to say which of those two is better
calibrated and whether their distance from the Kaplan-Meier is significant or not at a given
time (when not clearly overlapping).

This method is useful for making broad statements such as “model X is clearly better
calibrated than model Y” or “model X appears to make average predictions close to the
Kaplan-Meier estimate”, but that is the limit in terms of useful conclusions. One could refine
this method for more fine-grained information by instead using relative risk predictions
to create ‘risk groups’ that can be plotted against a stratified Kaplan-Meier, however this
method is harder to interpret and adds even more subjectivity around how many risk groups
to create and how to create them (Patrick Royston and Altman 2013). The next measure
we consider includes a graphical method as well as a quantitative interpretation.

7.2.2 D-Calibration
D-Calibration (Andres et al. 2018; Haider et al. 2020) evaluates a model’s calibration by
assessing if the predicted survival distributions follow the Uniform distribution as expected,
which is motivated by the result that for any random variable 𝑋 it follows 𝑆𝑋(𝑥) ∼ 𝒰(0, 1).
This can be tested using a 𝜒2 test-statistic:

𝜒2 ∶=
𝑛

∑
𝑖=1

(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖
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Figure 7.1: Comparing the calibration of a Cox PH (CPH), random forest (RF), and relative
risk tree (RRT) to the Kaplan-Meier estimate of the survival function calculated on a test
set. The calibration of RRT notably decreases over time whereas RF and CPH are closer
to the Kaplan-Meier curve.

where 𝑂1, ..., 𝑂𝑛 is the observed number of events in 𝑛 groups and 𝐸1, ..., 𝐸𝑛 is the expected
number of events.

To utilise this test, the [0, 1] codomain of 𝑆𝑖 is cut into 𝐵 disjoint contiguous intervals (‘bins’)
over the full range [0, 1]. Let 𝑚 be the total number of observations, then assuming a discrete
uniform distribution as the theoretical distribution, the expected number of events in each
bin is 𝐸𝑖 = 𝑚/𝐵 (as the probability of an observation falling into each bin is equal).

The observations in the 𝑖th bin, 𝑏𝑖, are defined by the set:

𝑏𝑖 ∶= {𝑗 = 1, … , 𝑚 ∶ ⌈ ̂𝑆𝑖(𝑡𝑗)𝐵⌉ = 𝑖}

where 𝑗 = 1, … , 𝑚 are the indices of the observations, ̂𝑆𝑖 are observed (i.e., predicted)
survival functions, 𝑡𝑖 are observed (i.e., the ground truth) outcome times, and ⌈⋅⌉ is the
ceiling function. The observed number of events in 𝑏𝑖 is then the number of observations in
that set: 𝑂𝑖 = |𝑏𝑖|.
The D-Calibration measure, or 𝜒2 statistic, is now defined by,

𝐷𝜒2(Ŝ, t) ∶= ∑𝐵
𝑖=1(𝑂𝑖 − 𝑚

𝐵 )2

𝑚/𝐵

where Ŝ = ( ̂𝑆1 ̂𝑆2 ⋯ ̂𝑆𝑚)⊤ and t = (𝑡1 𝑡2 ⋯ 𝑡𝑚)⊤.

This measure has several useful properties. Firstly, one can test the null hypothesis that a
model is ‘D-calibrated’ by deriving a 𝑝-value from comparison to 𝜒2

𝐵−1. Secondly, 𝐷𝜒2 tends
to zero as a model is increasingly well-calibrated, hence the measure can be used for model
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comparison. Finally, the theory lends itself to an intuitive graphical calibration method as
a D-calibrated model implies:

𝑝 = ∑𝑖 𝕀(𝑇𝑖 ≤ ̂𝐹 −1
𝑖 (𝑝))

𝑚

where 𝑝 is some value in [0, 1], ̂𝐹 −1
𝑖 is the 𝑖th predicted inverse cumulative distribution

function, and 𝑚 is again the number of observations. In words, the number of events occur-
ring at or before each quantile should be equal to the quantile itself, for example 50% of
events should occur before their predicted median survival time. Therefore, one can plot 𝑝
on the x-axis and the right hand side of the above equation on the y-axis. A D-calibrated
model should result in a straight line on 𝑥 = 𝑦. This is visualised in Figure 7.2 for the same
models as in Figure 7.1. This figure supports the previous findings that the relative risk tree
is poorly calibrated in contrast to the Cox model and random forest but again no direct
comparison between the latter models is possible.

DCal (p−values):

   CPH = 8.2 (0.51)
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Figure 7.2: Comparing the D-calibration of a Cox PH (CPH), random forest (RF), and
relative risk tree (RRT) to the expected distribution on y=x. As with Figure 7.1, the relative
risk tree is clearly not D-calibrated (as supported by the figures in the bottom-right). The
CPH and RF are closer to the y=x however neither follow it perfectly.

Whilst D-calibration has the same problems as the Kaplan-Meier method with respect to
visual comparison, at least in this case there are quantities to help draw more concrete
solutions. For the models in Figure 7.2, it is clear that the relative risk tree is not D-
calibrated with 𝑝 < 0.01 indicating the null hypothesis of D-calibration, i.e., the predicted
quantiles not following a Discrete Uniform distribution, can be comfortably rejected. Whilst
the D-calibration for the Cox model is smaller than that of the random forest, the difference
is unlikely to be significant, as is seen in the overlapping curves in the figure.

The next chapter will look at scoring rules, which provides a more concrete method to
analytically compare the predicted distributions from survival models.
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Scoring rules evaluate probabilistic predictions and (attempt to) measure the overall pre-
dictive ability of a model in terms of both calibration and discrimination (Gneiting and
Raftery 2007; Murphy 1973). In contrast to calibration measures, which assess the average
performance across all observations on a population level, scoring rules evaluate the sample
mean of individual predictions across all observations in a test set. As well as being able
to provide information at an individual level, scoring rules are also popular as probabilistic
forecasts are widely recognised to be superior to deterministic predictions for capturing
uncertainty in predictions (A. P. Dawid 1984; A. Philip Dawid 1986). Formalisation and
development of scoring rules has primarily been due to Dawid (A. P. Dawid 1984; A. Philip
Dawid 1986; A. Philip Dawid and Musio 2014) and Gneiting and Raftery (Gneiting and
Raftery 2007); though the earliest measures promoting “rational” and “honest” decision
making date back to the 1950s (Brier 1950; Good 1952). Few scoring rules have been pro-
posed in survival analysis, although the past few years have seen an increase in popularity
in these measures. Before delving into these measures, we will first describe scoring rules in
the simpler classification setting.

Scoring rules are pointwise losses, which means a loss is calculated for all observations and
the sample mean is taken as the final score. To simplify notation, we only discuss scoring
rules in the context of a single observation where 𝐿𝑖( ̂𝑆𝑖, 𝑡𝑖, 𝛿𝑖) would be the loss calculated for
some observation 𝑖 where ̂𝑆𝑖 is the predicted survival function (from which other distribution
functions can be derived), and (𝑡𝑖, 𝛿𝑖) is the observed survival outcome.

8.1 Classification Losses
In the simplest terms, a scoring rule compares two values and assigns them a score (hence
‘scoring rule’), formally we’d write 𝐿 ∶ ℝ × ℝ ↦ ℝ̄. In machine learning, this usually means
comparing a prediction for an observation to the ground truth, so 𝐿 ∶ ℝ × 𝒫 ↦ ℝ̄ where
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𝒫 is a set of distributions. Crucially, scoring rules usually refer to comparisons of true and
predicted distributions. As an example, take the Brier score (Brier 1950) defined by:

𝐿𝐵𝑟𝑖𝑒𝑟( ̂𝑝𝑖, 𝑦𝑖) = (𝑦𝑖 − ̂𝑝𝑖(𝑦𝑖))2

This scoring rule compares the ground truth to the predicted probability distribution by
testing if the difference between the observed event and the truth is minimized. This is
intuitive as if the event occurs and 𝑦𝑖 = 1, then ̂𝑝𝑖(𝑦𝑖) should be as close to one as possible
to minimize the loss. On the other hand, if 𝑦𝑖 = 0 then the better prediction would be
̂𝑝𝑖(𝑦𝑖) = 0.

This demonstrates an important property of the scoring rule, properness. A loss is proper,
if it is minimized by the correct prediction. In contrast, the loss 𝐿𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟( ̂𝑝𝑖, 𝑦𝑖) =
1 − 𝐿𝐵𝑟𝑖𝑒𝑟( ̂𝑝𝑖, 𝑦𝑖) is still a scoring rule as it compares the ground truth to the prediction
probability distribution, but it is clearly improper as the perfect prediction ( ̂𝑝𝑖(𝑦𝑖) = 𝑦𝑖)
would result in a score of 1 whereas the worst prediction would result in a score or 0. Proper
losses provide a method of model comparison as, by definition, predictions closest to the
true distribution will result in lower expected losses.

Another important property is strict properness. A loss is strictly proper if the loss is
uniquely minimized by the ‘correct’ prediction. Consider now the loss 𝐿0( ̂𝑝𝑖, 𝑦𝑖) = 0. Not
only is this a strictly proper scoring rule but it is also proper. The loss can only take the
value 0 and is therefore guaranteed to be minimized by the correct prediction. It is clear
however that this loss is useless. In contrast, the Brier score is minimized by only one value,
which is the optimal prediction (Figure 8.1). Strictly proper losses are particular important
for automated model optimisation, as minimization of the loss will result in the ‘optimum
score estimator based on the scoring rule’ (Gneiting and Raftery 2007).

Mathematically, a classification loss 𝐿 ∶ 𝒫 × 𝒴 → ℝ̄ is proper if for any distributions 𝑝𝑌 , 𝑝 in
𝒫 and for any random variables 𝑌 ∼ 𝑝𝑌 , it holds that 𝔼[𝐿(𝑝𝑌 , 𝑌 )] ≤ 𝔼[𝐿(𝑝, 𝑌 )]. The loss is
strictly proper if, in addition, 𝑝 = 𝑝𝑌 uniquely minimizes the loss.

As well as the Brier score, which was defined above, another widely used loss is the log loss
(Good 1952), defined by

𝐿𝑙𝑜𝑔𝑙𝑜𝑠𝑠( ̂𝑝𝑖, 𝑦𝑖) = − log ̂𝑝𝑖(𝑦𝑖)

These losses are visualised in Figure 8.1, which highlights that both losses are strictly proper
(A. Philip Dawid and Musio 2014) as they are minimized when the true prediction is made,
and converge to the minimum as predictions are increasingly improved.

8.2 Survival Losses
Analogously to classification losses, a survival loss 𝐿 ∶ 𝒫 × ℝ>0 × {0, 1} → ℝ̄ is proper if
for any distributions 𝑝𝑌 , 𝑝 in 𝒫, and for any random variables 𝑌 ∼ 𝑝𝑌 , and 𝐶 t.v.i. ℝ>0;
with 𝑇 ∶= min(𝑌 , 𝐶) and Δ ∶= 𝕀(𝑇 = 𝑌 ); it holds that, 𝔼[𝐿(𝑝𝑌 , 𝑇 , Δ)] ≤ 𝔼[𝐿(𝑝, 𝑇 , Δ)]. The
loss is strictly proper if, in addition, 𝑝 = 𝑝𝑌 uniquely minimizes the loss. A survival loss is
referred to as outcome-independent (strictly) proper if it is only (strictly) proper when 𝐶
and 𝑌 are independent.
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Figure 8.1: Brier and log loss scoring rules for a binary outcome and varying probabilistic
predictions. x-axis is a probabilistic prediction in [0, 1], y-axis is Brier score (left) and log
loss (right). Blue lines are varying Brier score/log loss over different predicted probabilities
when the true outcome is 1. Red lines are varying Brier score/log loss over different predicted
probabilities when the true outcome is 0. Both losses are minimized when ̂𝑝𝑖(𝑦𝑖) = 𝑦𝑖.

With these definitions, the rest of this chapter lists common scoring rules in survival anal-
ysis and discusses some of their properties. As with other chapters, this list is likely not
exhaustive but will cover commonly used losses.

8.2.1 Integrated Graf Score
The Integrated Graf Score (IGS) was introduced by Graf (Graf and Schumacher 1995; Graf
et al. 1999) as an analogue to the integrated brier score (IBS) in regression. It is likely the
commonly used scoring rule in survival analysis, possibly due to its intuitive interpretation.

The loss is defined by

𝐿𝐼𝐺𝑆( ̂𝑆𝑖, 𝑡𝑖, 𝛿𝑖| ̂𝐺𝐾𝑀) = ∫
𝜏∗

0

̂𝑆2
𝑖 (𝜏)𝕀(𝑡𝑖 ≤ 𝜏, 𝛿𝑖 = 1)

̂𝐺𝐾𝑀(𝑡𝑖)
+

̂𝐹 2
𝑖 (𝜏)𝕀(𝑡𝑖 > 𝜏)

̂𝐺𝐾𝑀(𝜏)
𝑑𝜏 (8.1)

where ̂𝑆2
𝑖 (𝜏) = ( ̂𝑆𝑖(𝜏))2 and ̂𝐹 2

𝑖 (𝜏) = (1 − ̂𝑆𝑖(𝜏))2, and 𝜏∗ ∈ ℝ≥0 is an upper threshold to
compute the loss up to, and ̂𝐺𝐾𝑀 is the Kaplan-Meier trained on the censoring distribution
for IPCW (Section 6.1).

At first glance this might seem intimidating but it is worth taking the time to understand the
intuition behind the loss. Recall the classification Brier score, 𝐿( ̂𝑝𝑖, 𝑦𝑖) = (𝑦𝑖 − ̂𝑝𝑖(𝑦))2, this
provides a method to compare and evaluate a probability mass function at one time-point.
The integrated Brier score (IBS), also known as the CRPS, is the integral of the Brier score
for all real-valued thresholds (Gneiting and Raftery 2007) and hence allows predictions to
be evaluated over multiple points as 𝐿( ̂𝐹𝑖, 𝑦𝑖) = ∫( ̂𝐹𝑖(𝑦𝑖) − 𝕀(𝑦𝑖 ≥ 𝑥))2𝑑𝑦 where ̂𝐹𝑖 is the
predicted cumulative distribution function and 𝑥 is some meaningful threshold. In survival



52 Evaluating Distributions by Scoring Rules

analysis, ̂𝐹𝑖(𝜏) represents the probability of an observation having experienced the event at
or before 𝜏 , and the ground truth to compare to is therefore whether the observation has
actually experienced the event at 𝜏 , which is the case when 𝑡𝑖 ≤ 𝜏 . Hence the IBS becomes
𝐿( ̂𝐹𝑖, 𝑡𝑖) = ∫( ̂𝐹𝑖(𝜏) − 𝕀(𝑡𝑖 ≤ 𝜏))2𝑑𝜏 . Now for a given time 𝜏 :

𝐿( ̂𝐹𝑖, 𝑡) = {( ̂𝐹𝑖(𝜏) − 1)2 = (1 − ̂𝐹𝑖(𝜏)2) = ̂𝑆2
𝑖 (𝜏), if 𝑡𝑖 ≤ 𝜏

( ̂𝐹𝑖(𝜏) − 0)2 = ̂𝐹 2
𝑖 (𝜏), if 𝑡𝑖 > 𝜏 (8.2)

In words, if an observation has not yet experienced an outcome (𝑡𝑖 > 𝜏) then the loss
is minimized when the cumulative distribution function (the probability of having already
died) is 0, which is intuitive as the optimal prediction is correctly identifying the observation
has yet to experience the event. In contrast, if the observation has experienced the outcome
(𝑡𝑖 ≤ 𝜏) then the loss is minimized when the survival function (the probability of surviving
until 𝜏) is 0, which follows from similar logic.

The final component of the Graf score is accommodating for censoring. At 𝜏 an observation
will either have

1. Not experienced the event: 𝐼(𝑡𝑖 > 𝜏);
2. Experienced the event: 𝐼(𝑡𝑖 ≤ 𝜏, 𝛿𝑖 = 1); or
3. Been censored: 𝐼(𝑡𝑖 ≤ 𝜏, 𝛿𝑖 = 0)

In the Graf score, censored observations are discarded. If they were not then Equation 8.2
would imply their contribution would be treated the same as those who had experienced
the event. However this assumption would be entirely wrong as a censored observation is
guaranteed not to have experienced the event, hence an ideal prediction for a censored
observation is a high survival probability up until the point of censoring, at which time
comparison to ground truth is unknown as this is no longer observed.

The act of discarding censored observations means that the sample size decreases over time.
To compensate for this, IPCW is used to increasingly weight predictions as 𝜏 increases.
Hence, IPCW weights, 𝑊𝑖 are defined such that

𝑊𝑖 = {
̂𝐺−1
𝐾𝑀(𝑡𝑖), if 𝕀(𝑡𝑖 ≤ 𝜏, 𝛿𝑖 = 1)
̂𝐺−1
𝐾𝑀(𝜏), if 𝕀(𝑡𝑖 > 𝜏)

The weights total 1 when divided over all samples and summed (Graf et al. 1999). They
are also intuitive as observations are either weighted by 𝐺(𝜏) when they are still alive and
therefore still part of the sample, or by 𝐺(𝑡𝑖) otherwise.

As well as being intuitive, when censoring is uninformative, the Graf score consistently
estimates the mean square error 𝐿(𝑡, 𝑆|𝜏∗) = ∫𝜏∗

0 [𝕀(𝑡 > 𝜏) − 𝑆(𝜏)]2𝑑𝜏 , where 𝑆 is the
correctly specified survival function (Gerds and Schumacher 2006). However, despite these
promising properties, the IGS is improper and must therefore be used with care (Rindt
et al. 2022; R. Sonabend 2022). In practice, experiments have shown that the effect of
improperness is minimal and therefore this loss should be avoided for automated routines
such as model tuning, however it can still be used for model evaluation. In addition, a small
adaptation of the loss results in a strictly proper scoring rule simply by altering the weights
such that 𝑊𝑖 = ̂𝐺−1

𝐾𝑀(𝑡𝑖) for all uncensored observations and 0 otherwise (R. Sonabend
2022), resulting in the reweighted Graf score:
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𝐿𝑅𝐺𝑆( ̂𝑆𝑖, 𝑡𝑖, 𝛿𝑖| ̂𝐺𝐾𝑀) = 𝛿𝑖𝕀(𝑡𝑖 ≤ 𝜏∗) ∫
𝜏∗

0

(𝕀(𝑡𝑖 ≤ 𝜏) − ̂𝐹𝑖(𝜏))2

̂𝐺𝐾𝑀(𝑡𝑖)
𝑑𝜏

The addition of 𝕀(𝑡𝑖 ≤ 𝜏∗) completely removes observations that experience the event after
the cutoff time, 𝜏∗, this ensures there are no cases where the 𝐺(𝑡𝑖) weighting is calculated
on time after the cutoff. Including an upper threshold (i.e, 𝜏∗ < ∞) effects properness and
generalization statements. For example, by evaluating a model using the RGS with a 𝜏∗

threshold, then the model may be said to only perform well up until 𝜏∗ with its performance
unknown after this time.

The change of weighting slightly alters the interpretation of the contributions at different
time-points. By example, let (𝑡𝑖 = 4, 𝑡𝑗 = 5) be two observed survival times, then at 𝜏 = 3,
the Graf score weighting would be ̂𝐺−1

𝐾𝑀(4) for both observations, whereas the RGS weights
would be (𝐾𝑀𝐺−1(4), 𝐾𝑀𝐺−1(5)) respectively, hence there is always more ‘importance’
placed on observations that take longer to experience the event. In practice, the difference
between these weights appears to be minimal (R. Sonabend 2022) but as RGS is strictly
proper, it is more suitable for automated experiments.

8.2.2 Integrated Survival Log Loss
The integrated survival log loss (ISLL) was also proposed by Graf et al. (1999).

𝐿𝐼𝑆𝐿𝐿( ̂𝑆𝑖, 𝑡𝑖, 𝛿𝑖| ̂𝐺𝐾𝑀) = − ∫
𝜏∗

0

log[ ̂𝐹𝑖(𝜏)]𝕀(𝑡𝑖 ≤ 𝜏, 𝛿𝑖 = 1)
̂𝐺𝐾𝑀(𝑡𝑖)

+ log[ ̂𝑆𝑖(𝜏)]𝕀(𝑡𝑖 > 𝜏)
̂𝐺𝐾𝑀(𝜏)

𝑑𝜏

where 𝜏∗ ∈ ℝ>0 is an upper threshold to compute the loss up to.

Similarly to the IGS, there are three ways to contribute to the loss depending on whether
an observation is censored, experienced the event, or alive, at 𝜏 . Whilst the IGS is routinely
used in practice, there is no evidence that ISLL is used, and moreover there are no proofs
(or claims) that it is proper.

The reweighted ISLL (RISLL) follows similarly to the RIGS and is also outcome-independent
strictly proper (R. Sonabend 2022).

𝐿𝑅𝐼𝑆𝐿𝐿( ̂𝑆𝑖, 𝑡𝑖, 𝛿𝑖| ̂𝐺𝐾𝑀) = −𝛿𝑖𝕀(𝑡𝑖 ≤ 𝜏∗) ∫
𝜏∗

0

𝕀(𝑡𝑖 ≤ 𝜏) log[ ̂𝐹𝑖(𝜏)] + 𝕀(𝑡𝑖 > 𝜏) log[ ̂𝑆𝑖(𝜏)] 𝑑𝜏
̂𝐺𝐾𝑀(𝑡𝑖)

8.2.3 Survival density log loss
Another outcome-independent strictly proper scoring rule is the survival density log loss
(SDLL) (R. Sonabend 2022), which is given by

𝐿𝑆𝐷𝐿𝐿( ̂𝑓𝑖, 𝑡𝑖, 𝛿𝑖| ̂𝐺𝐾𝑀) = −𝛿𝑖 log[ ̂𝑓𝑖(𝑡𝑖)]
̂𝐺𝐾𝑀(𝑡𝑖)

where ̂𝑓𝑖 is the predicted probability density function. This loss is essentially the classi-
fication log loss (− log( ̂𝑝𝑖(𝑡𝑖))) with added IPCW. Whilst the classification log loss has
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beneficial properties such as being differentiable, this is more complex for the SDLL and it
is not widely used in practice. A useful alternative to the SDLL which can be readily used
in automated procedures is the right-censored log loss.

8.2.4 Right-censored log loss
The right-censored log loss (RCLL) is an outcome-independent strictly proper scoring rule
(Avati et al. 2020) that benefits from not depending on IPCW in its construction. The RCLL
is defined by

𝐿𝑅𝐶𝐿𝐿( ̂𝑆𝑖, 𝑡𝑖, 𝛿𝑖) = − log[𝛿𝑖 ̂𝑓𝑖(𝑡𝑖) + (1 − 𝛿𝑖) ̂𝑆𝑖(𝑡𝑖)]

This loss is interpretable when we break it down into its two halves:

1. If an observation is censored at 𝑡𝑖 then all the information we have is that they did
not experience the event at the time, so they must be ‘alive’, hence the optimal
value is ̂𝑆𝑖(𝑡𝑖) = 1 (which becomes −𝑙𝑜𝑔(1) = 0).

2. If an observation experiences the event then the ‘best’ prediction is for the prob-
ability of the event at that time to be maximised, as pdfs are not upper-bounded
this means ̂𝑓𝑖(𝑡𝑖) = ∞ (and −𝑙𝑜𝑔(𝑡𝑖) → ∞ as 𝑡𝑖 → ∞).

8.2.5 Absolute Survival Loss
The absolute survival loss, developed over time by Schemper and Henderson (2000) and
Schmid et al. (2011), is based on the mean absolute error is very similar to the IGS but
removes the squared term:

𝐿𝐴𝑆𝐿( ̂𝑆𝑖, 𝑡𝑖, 𝛿𝑖| ̂𝐺𝐾𝑀) = ∫
𝜏∗

0

̂𝑆𝑖(𝜏)𝕀(𝑡𝑖 ≤ 𝜏, 𝛿𝑖 = 1)
̂𝐺𝐾𝑀(𝑡𝑖)

+
̂𝐹𝑖(𝜏)𝕀(𝑡𝑖 > 𝜏)

̂𝐺𝐾𝑀(𝜏)
𝑑𝜏

where ̂𝐺𝐾𝑀 and 𝜏∗ are as defined above. Analogously to the IGS, the ASL score consistently
estimates the mean absolute error when censoring is uninformative (Schmid et al. 2011) but
there are also no proofs or claims of properness. The ASL and IGS tend to yield similar
results (Schmid et al. 2011) but in practice there is no evidence of the ASL being widely
used.

8.3 Prediction Error Curves
As well as evaluating probabilistic outcomes with integrated scoring rules, non-integrated
scoring rules can be utilised for evaluating distributions at a single point. For example,
instead of evaluating a probabilistic prediction with the IGS over ℝ≥0, instead one could
compute the IGS at a single time-point, 𝜏 ∈ ℝ≥0, only. Plotting these for varying values of
𝜏 results in ‘prediction error curves’ (PECs), which provide a simple visualisation for how
predictions vary over the outcome. PECs are especially useful for survival predictions as
they can visualise the prediction ‘over time’. PECs are mostly used as a graphical guide when
comparing few models, rather than as a formal tool for model comparison. An example for
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PECs is provided in Figure 8.2 for the IGS where the the Cox PH consistently outperforms
the SVM.

Figure 8.2: Prediction error curves for the CPH and SVM models from Chapter 7. x-axis
is time and y-axis is the IGS computed at different time-points. The CPH (red) performs
better than the SVM (blue) as it scores consistently lower. Trained and tested on randomly
simulated data from mlr3proba.

8.4 Baselines and ERV
A common criticism of scoring rules is a lack of interpretability, for example, an IGS of 0.5
or 0.0005 has no meaning by itself, so below we present two methods to help overcome this
problem.

The first method, is to make use of baselines for model comparison, which are models or
values that can be utilised to provide a reference for a loss, they provide a universal method
to judge all models of the same class by (Gressmann et al. 2018). In classification, it is
possible to derive analytical baseline values, for example a Brier score is considered ‘good’
if it is below 0.25 or a log loss if it is below 0.693 (Figure 8.1), this is because these are the
values obtained if you always predicted probabilties as 0.5, which is a reasonable basline
guess in a binary classificaiton problem. In survival analysis, simple analytical expressions
are not possible as losses are dependent on the unknown distributions of both the survival
and censoring time. Therefore all experiments in survival analysis must include a baseline
model that can produce a reference value in order to derive meaningful results. A suitable
baseline model is the Kaplan-Meier estimator (Graf and Schumacher 1995; Lawless and Yuan
2010; Patrick Royston and Altman 2013), which is the simplest model that can consistently
estimate the true survival function.

As well as directly comparing losses from a ‘sophisticated’ model to a baseline, one can
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also compute the percentage increase in performance between the sophisicated and baseline
models, which produces a measure of explained residual variation (ERV) (Edward L. Korn
and Simon 1990; Edward L. Korn and Simon 1991). For any survival loss 𝐿, the ERV is,

𝑅𝐿(𝑆, 𝐵) = 1 − 𝐿|𝑆
𝐿|𝐵

where 𝐿|𝑆 and 𝐿|𝐵 is the loss computed with respect to predictions from the sophisticated
and baseline models respectively.

The ERV interpretation makes reporting of scoring rules easier within and between exper-
iments. For example, say in experiment A we have 𝐿|𝑆 = 0.004 and 𝐿|𝐵 = 0.006, and in
experiment B we have 𝐿|𝑆 = 4 and 𝐿|𝐵 = 6. The sophisticated model may appear worse
at first glance in experiment A (as the losses are very close) but when considering the ERV
we see that the performance increase is identical (both 𝑅𝐿 = 33%), thus providing a clearer
way to compare models.
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When it comes to evaluating survival time predictions, there are few measures available
at our disposal. As a result of survival time predictions being uncommon compared to
other prediction types (Section 4.3), there are limited survival time evaluation measures in
the literature. To our knowledge, there are no specialised ‘survival time measures’, instead
regression measures are used by ignoring censored observations.

Before presenting these measures, consider what happens when censored observations are
discarded. If censoring is truly independent, occurs randomly, and is very limited in the data,
then there is little harm in discarding observations and treating this as a regression problem.
However, if censoring is not independent, then discarding censored observations will lead to
missing valuable insights about the model. For example, say the task of interest is to predict
the probability of death due to kidney failure and patients are censored if they receive a
transplant - this is clearly a competing risk as receiving a transplant greatly reduces the
probability of death. If one were to predict the time to death for all patients and to not
evaluate the quality of prediction for censored patients, then it would only be possible to
conclude about the model’s performance for those who do not receive a transplant. On the
surface this may appear to be of value, however, if at the time of prediction it is impossible to
know who will receive a transplant (perhaps because the dataset omits relevant information
such as time of hospital admission, wait on register, etc.), then for a given prediction for
an observation, it would be impossible to know if the prediction is trustworthy - it would
be if that patient does not receive a transplant, but would not be if they do not. In short,
it is essential that predictions for individuals who end up being censored, are as good as
those who are not, simply because there is no method to know which group observations
will eventually fall into.

It is interesting to consider if IPCW strategies would compensate for this deficiency, however
as we were unable to find research into this method, we have only included measures that
we term ‘censoring-ignored regression measures’, which are presented in (P. Wang, Li, and
Reddy 2019).
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9.1 Distance measures
Survival time measures are often referred to as ‘distance’ measures as they measure the
distance between the true, (𝑡, 𝛿 = 1), and predicted, ̂𝑡, values. These are presented in turn
with brief descriptions of their interpretation.

Censoring-ignored mean absolute error, 𝑀𝐴𝐸𝐶

In regression, the mean absolute error (MAE) is a popular measure because it is intuitive
to understand as it measures the absolute difference between true and predicted outcomes;
hence intuitively one can understand that a model predicting a height of 175cm is clearly
better than one predicting a height of 180cm, for a person with true height of 174cm.

𝑀𝐴𝐸𝐶( ̂t, t, 𝛿) = 1
𝑑

𝑚
∑
𝑖=1

𝛿𝑖|𝑡𝑖 − ̂𝑡𝑖|

Where 𝑑 is the number of uncensored observations in the dataset, 𝑑 = ∑𝑖 𝛿𝑖.

Censoring-ignored mean squared error

In comparison to MAE, the mean squared error (MSE), computes the squared differences
between true and predicted values. While the MAE provides a smooth, linear, ‘penalty’ for
increasingly poor predictions (i.e., the difference between an error of predicting 2 vs. 5 is
still 3), but the square in the MSE means that larger errors are quickly magnified (so the
difference in the above example is 9). By taking the mean over all predictions, the effect of
this inflation is to increase the MSE value as larger mistakes are made.

𝑀𝑆𝐸𝐶( ̂t, t, 𝛿) = 1
𝑑

𝑚
∑
𝑖=1

𝛿𝑖(𝑡𝑖 − ̂𝑡𝑖)2

Where 𝑑 is again the number of uncensored observations in the dataset, 𝑑 = ∑𝑖 𝛿𝑖.

Censoring-adjusted root mean squared error

Finally, the root mean squared error (RMSE), is simply the square root of the MSE. This
allows interpretation on the original scale (as opposed to the squared scale produced by the
MSE). Given the inflation effect for the MSE, the RMSE will be larger than the MAE as
increasingly poor predictions are made; it is common practice for the MAE and RMSE to
be reported together.

𝑅𝑀𝑆𝐸𝐶( ̂t, t, 𝛿) = √𝑀𝑆𝐸𝐶( ̂t, t, 𝛿)

9.2 Over- and under-predictions
All of these distance measures assume that the error for an over-prediction ( ̂𝑡 > 𝑡) should
be equal to an under-prediction ( ̂𝑡 < 𝑡), i.e., that it is ‘as bad’ if a model predicts an
outcome time being 10 years longer than the truth compared to being 10 years shorter. In



Over- and under-predictions 59

the survival setting, this assumption is often invalid as it is generally preferred for models
to be overly cautious, hence to predict negative events to happen sooner (e.g., predict a
life-support machine fails after three years not five if the truth is actually four) and to
predict positive events to happen later (e.g., predict a patient recovers after four years not
two if the truth is actually three). A simple method to incorporate this imbalance between
over- and under-predictions is to add a weighting factor to any of the above measures, for
example the 𝑀𝐴𝐸𝐶 might become

𝑀𝐴𝐸𝐶( ̂t, t, 𝛿, 𝜆, 𝜇, 𝜙) = 1
𝑑

𝑚
∑
𝑖=1

𝛿𝑖|(𝑡𝑖 − ̂𝑡𝑖)[𝜆𝕀(𝑡𝑖 > ̂𝑡𝑖) + 𝜇𝕀(𝑡𝑖 < ̂𝑡𝑖) + 𝜙𝕀(𝑡𝑖 = ̂𝑡𝑖)]|

where 𝜆, 𝜇, 𝜙 are any Real number to be used to weight over-, under-, and exact-predictions,
and 𝑑 is as above. The choice of these are highly context dependent and could even be
tuned.
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After reading this part of the book, evaluating survival analysis models may appear more
daunting than regression and classification settings, which, in contrast, have fewer (com-
mon) measures to choose from. In regression problems, the RMSE and MAE are common
choices for evaluating how far predictions are from the truth. In classification, the Brier
score or logloss may be used to evaluate probabilistic predictions and the accuracy score
or TPR/TNR/FPR/FNR are common for deterministic predictions. In contrast, there are
many more measures in survival analysis which are necessarily more complex, due to the
need to handle censoring with many possible methods for doing so. Therefore, this final
chapter aims to provide some simple to follow guidelines for selecting measures for different
types of experiments.

10.1 Defining the experiment
Experiments may be performed to make predictions for new data, compare the performance
of multiple models (‘benchmark experiments’), investigate patterns in observed data, or
some combination of these. Each experiment requires different choices of measures, with
different levels of strictness applied to measure assumptions.

10.1.1 Predictive experiments
In the real world, predictive experiments are most common. These are now daily occurrences
as machine learning models are routinely deployed on servers to make ongoing predictions.
In these cases, the exact task must be precisely stated before any model is deployed and
evaluated. Common survival problems to solve include:

1. Identifying low and high risk groups in new data (for resource allocation);
2. Predicting the survival distribution for an individual over time; and
3. Predicting the survival probability for an individual at a specific time.
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The first of these is a discrimination problem and it is therefore most important that the
model optimises corresponding measures and that measure assumptions are justified. How-
ever, even this task may be more complex than it initially seems. For example, while some
papers have shown flaws in Harrell’s C (Gönen and Heller 2005; Rahman et al. 2017; Schmid
and Potapov 2012; Uno et al. 2007), others have demonstrated that common alternatives
yield very similar results (Rahman et al. 2017; Therneau and Atkinson 2020) and moreover
some prominent alternatives may be harder to interpret due to high variance (Rahman et al.
2017; Schmid and Potapov 2012). In predictive experiment that may require more level of
automation, it is important to be careful of C-hacking (Section 6.1.2) and to avoid overop-
timistic results. Hence one should not compute a range of concordance indices and report
the maximum but instead calculate a single discrimination measure and then establish a
pre-defined threshold to determine if the deployed model is optimal, a natural threshold
would be 0.5 as anything above this is better than a baseline model. Given Harrell’s C to be
increasingly over-optimistic with additional censoring (Rahman et al. 2017), it is advisable
to use Uno’s C instead.

If the task of interest is to predict survival distributions over time, then the choice of
measure is more limited and only the RCLL and the proper Graf score are recommended.
Both these measures can only be interpreted with respect to a baseline so use of the ERV
representation is strongly recommended. As with the previous task, establishing a threshold
for performance is essential prior to deployment and for ongoing evaluation. It is less clear in
these cases what this threshold might be, but the simplest starting point would be to ensure
that the model continues to outperform the baseline or a simpler gold-standard model (e.g.,
the Cox PH).

The final task of interest differs from the previous by only making predictions at a specific
time. In this case, prediction error curves, and single-time point calibration measures can
be used, as well as scoring rules with shorter cut-offs (i.e., the upper limit of the integral).
It is imperative that model performance is never extrapolated outside of the pre-specified
time.

10.1.2 Benchmark experiments
When conducting benchmark experiments, it is advisable to use a spread of measures so
that results can be compared across various properties. In this case, models should be tested
against discrimination, calibration, and overall predictive ability (i.e., with scoring rules). As
models make different types of predictions, results from these experiments should be limited
to metrics that are directly comparable, in other words, two models should only be compared
based on the same metric. In benchmark experiments, models are compared across the same
data and same resampling strategy, hence measure assumptions become less important as
they are equally valid or flawed for all models. For example, if one dataset has particularly
high amounts of censoring leading to an artificially higher concordance index, then this bias
would affect all models equally and the overall experiment would not be affected. Hence, in
these experiments it suffices to pick one or two measures for concordance, discrimination,
and predictive ability, without having to be overly concerned with the individual metric.

This book recommends using Harrell’s C and Uno’s C for concordance as these are simplest
to compute and including both enables more confidence in model comparison, i.e., if a
model outperforms another with respect to both these measures then there can be higher
confidence in drawing statements about the model’s discriminatory power. For calibration,
D-calibration is recommended as it can be meaningfully compared between models, and
the RCLL is recommended for a scoring rule (which is proper for outcome-independent
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censoring). No distance measure is recommended as these do not apply to the vast majority
of models. All these measures can be used for automated tuning, in the case of discrimination
tuning to Harrell’s C alone should suffice (without also tuning to Uno’s C).

10.1.3 Investigation
Investigating patterns in observed data is increasingly common as model interpretability
methods have become more accessible (Molnar 2019). Before data can be investigated, any
model that is trained on the data must first be demonstrated to be a good fit to the data. A
model’s fit to data can also be evaluated by resampling the data (Chapter 3) and evaluating
the predictions. In this case, it is important to choose measures that are interpretable and
have justified assumptions. Calibration measures are particularly useful for evaluating if a
model is well fit to data, and any of the methods described in Chapter 7 are recommended
for this purpose. Discrimination measures may be useful, however, given how susceptible
they are to censoring, they can be difficult to interpret on their own, and the same is true
for scoring rules. One method to resolve ambiguity is to perform a benchmark experiment of
multiple models on the same data (ideally with some automated tuning) and then select the
best model from this experiment and refit it on the full data (Becker, Schneider, and Fischer
2024) – this is a robust, empirical method that demonstrates a clear trail to selecting a model
that outperforms other potential candidates. When investigating a dataset, one may also
consider using different measures to assess algorithmic fairness (R. Sonabend et al. 2022),
any measure that can be optimised (i.e., where the lowest or highest value is the best) may
be used in this case. Finally, there are survival adaptations to the well-known AIC (Liang
and Zou 2008) and BIC (Volinsky and Raftery 2000) however as these are generally only
applicable to ‘classical’ models (Chapter 11), they are out of scope for this book and hence
have not been discussed.

10.2 Conclusions
This part of the book focused on survival measures. Measures may be used to evaluate model
predictions, to tune a model, or to train a model (e.g., in boosting or neural networks).
Unlike other settings, there are many different choices of survival measures and it can be
hard to determine which to use and when. In practice, like many areas of Statistics, the
most important factor is to clearly define any experiment upfront and to be clear about
which measures will be used and why. As a rule of thumb, good choices for measures are
Harrell’s C for evaluating discrimination, with Uno’s C supporting findings, D-calibration
for calibration, and the RCLL for evaluating overall predictive ability from distribution
predictions. Finally, if you are restricted to a single measure choice (e.g., for automated
tuning or continuous evaluation of deployed models), then we recommended selecting a
scoring rule such as RCLL which captures information about calibration and discrimination
simultaneously.
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11.1 A Review of Classical Survival Models
This chapter provides a brief review of classical survival models before later chapters move on
to machine learning models. ‘Classical’ models are defined with a very narrow scope in this
book: low-complexity models that are either non-parametric or have parameters that can be
fit with maximum likelihood estimation (or an equivalent method). In contrast, ‘machine
learning’ (ML) models require more intensive model fitting procedures such as recursion
or iteration. The classical models in this paper are fast to fit and highly interpretable,
though can be inflexible and may make unreasonable assumptions. Whereas the ML models
are more flexible with hyper-parameters however are computationally more intensive (both
in terms of speed and storage), require tuning to produce ‘good’ results, and are often a
‘black-box’ with difficult interpretation.

As classical survival models have been studied extensively for decades, these are only dis-
cussed briefly here, primarily these are of interest as many of these models will be seen to
influence machine learning extensions. The scope of the models discussed in this chapter is
limited to the general book scope (Section 4.2), i.e. single event with right-censoring and
no competing-risks, though in some cases these are discussed.

There are several possible taxonomies for categorising statistical models, these include:

• Parametrisation Type: One of non-, semi-, or fully-parametric. \ Non-parametric models
assume that the data distribution cannot be specified with a finite set of parameters. In
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contrast, fully-parametric models assume the distribution can be specified with a finite
set of parameters. Semi-parametric models are a hybrid of the two and are formed of a
finite set of parameters and an infinite-dimensional ‘nuisance’ parameter.

• Conditionality Type: One of unconditional or conditional. A conditional prediction is one
that makes use of covariates in order to condition the prediction on each observation.
Unconditional predictors, which are referred to below as ‘estimators’, ignore covariate
data and make the same prediction for all individuals.

• Prediction Type: One of ranking, survival time, or distribution (Section 4.3).

Table 11.1 summarises the models discussed below into the taxonomies above for reference.
Note that the Cox model is listed as predicting a continuous ranking, and not a survival
distribution, which may appear inconsistent with other definitions. The reason for this is
elaborated upon in Chapter 19. Though the predict-type taxonomy is favoured throughout
this book, it is clearer to review classical models in increasing complexity, beginning with
unconditional estimators before moving onto semi-parametric continuous ranking predic-
tions, and finally conditional distribution predictors. The review is brief with mathematics
limited to the model fundamentals but not including methods for parameter estimation.
Also the review is limited to the ‘basic’ model specification and common extensions such as
regularization are not discussed though they do exist for many of these models.

All classical models are highly transparent and accessible, with decades of research and
many off-shelf implementations. Predictive performance of each model is briefly discussed
as part of the review and then again in (R. E. B. Sonabend 2021).

Table 11.1: Table of models discussed in this literature review, classified by parametrisation,
prediction type, and conditionality.

Model1 Parametrisation2 Prediction3 Conditionality
Kaplan-Meier Non Distr. Unconditional
Nelson-Aalen Non Distr. Unconditional
Akritas Non Distr. Conditional
Cox PH Semi Rank Conditional
Parametric PH Fully Distr. Conditional
Accelerated Failure Time Fully Distr. Conditional
Proportional Odds Fully Distr. Conditional
Flexible Spline Fully Distr. Conditional

* 1. All models are implemented in the R package survival (Therneau 2015) with the
exception of flexible splines, implemented in flexsurv (C. Jackson 2016), and the Akritas
estimator in survivalmodels (R. Sonabend 2020). * 2. Non = non-parametric, Semi =
semi-parametric, Fully = fully-parametric. * 3. Distr. = distribution, Rank = ranking.

11.1.1 Non-Parametric Distribution Estimators
Unconditional Estimators

Unconditional non-parametric survival models assume no distribution for survival times
and estimate the survival function using simple algorithms based on observed outcomes
and no covariate data. The two most common methods are the Kaplan-Meier estimator
(KaplanMeier1958?), which estimates the average survival function of a training dataset,
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and the Nelson-Aalen estimator (Aalen 1978; Nelson 1972), which estimates the average
cumulative hazard function of a training dataset.

The Kaplan-Meier estimator of the survival function is given by

̂𝑆𝐾𝑀(𝜏|𝒟𝑡𝑟𝑎𝑖𝑛) = ∏
𝑡∈𝒰𝑂,𝑡≤𝜏

(1 − 𝑑𝑡
𝑛𝑡

) (11.1)

As this estimate is so important in survival models, this book will always use the symbol
̂𝑆𝐾𝑀 to refer to the Kaplan-Meier estimate of the average survival function fit on training

data (𝑇𝑖, Δ𝑖). Another valuable function is the Kaplan-Meier estimate of the average survival
function of the censoring distribution, which is the same as above but estimated on (𝑇𝑖, 1 −
Δ𝑖), this will be denoted by ̂𝐺𝐾𝑀 .

The Nelson-Aalen estimator for the cumulative hazard function is given by

𝐻̂(𝜏|𝒟𝑡𝑟𝑎𝑖𝑛) = ∑
𝑡∈𝒰𝑂,𝑡≤𝜏

𝑑𝑡
𝑛𝑡

(11.2)

The primary advantage of these models is that they rely on heuristics from empirical out-
comes only and don’t require any assumptions about the form of the data. To train the
models they only require (𝑇𝑖, Δ𝑖) and both return a prediction of 𝒮 ⊆ Distr(𝒯) ((box-
task-surv?)). In addition, both simply account for censoring and can be utilised in fit-
ting other models or to estimate unknown censoring distributions. The Kaplan-Meier and
Nelson-Aalen estimators are both consistent estimators for the survival and cumulative
hazard functions respectively.

Utilising the relationships provided in (Section 4.3), one could write the Nelson-Aalen esti-
mator in terms of the survival function as ̂𝑆𝑁𝐴 = exp(−𝐻̂(𝜏|𝒟𝑡𝑟𝑎𝑖𝑛)). It has been demon-
strated that ̂𝑆𝑁𝐴 and ̂𝑆𝐾𝑀 are asymptotically equivalent, but that ̂𝑆𝑁𝐴 will provide larger
estimates than ̂𝑆𝐾𝑀 in smaller samples (Colosimo et al. 2002). In practice, the Kaplan-
Meier is the most widely utilised non-parametric estimator in survival analysis and is the
simplest estimator that yields consistent estimation of a survival distribution; it is therefore
a natural, and commonly utilised, ‘baseline’ model (Harald Binder and Schumacher 2008;
Herrmann et al. 2021; Huang et al. 2020a; P. Wang, Li, and Reddy 2019): estimators that
other models should be ‘judged’ against to ascertain their overall performance (Chapter 5).

Not only can these estimators be used for analytical comparison, but they also provide
intuitive methods for graphical calibration of models (Section 7.2). These models are never
stuidied for prognosis directly but as baselines, components of complex models (Chapter 19),
or graphical tools (Habibi et al. 2018; Jager et al. 2008; Moghimi-dehkordi et al. 2008). The
reason for this is due to them having poor predictive performance as a result of omitting
explanatory variables in fitting. Moreover, if the data follows a particular distribution, para-
metric methods will be more efficient (P. Wang, Li, and Reddy 2019).

Conditional Estimators

The Kaplan-Meier and Nelson-Aalen estimators are simple to compute and provide good
estimates for the survival time distribution but in many cases they may be overly-simplistic.
Conditional non-parametric estimators include the advantages described above (no assump-
tions about underlying data distribution) but also allow for conditioning the estimation
on the covariates. This is particularly useful when estimating a censoring distribution that
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may depend on the data (Chapter 5). However predictive performance of conditional non-
parametric estimators decreases as the number of covariates increases, and these models
are especially poor when censoring is feature-dependent (Gerds and Schumacher 2006).

The most widely used conditional non-parametric estimator for survival analysis is the
Akritas estimator (Akritas 1994) defined by1

̂𝑆(𝜏 |𝑋∗, 𝒟𝑡𝑟𝑎𝑖𝑛, 𝜆) = ∏
𝑗∶𝑇𝑗≤𝜏,Δ𝑗=1

(1 − 𝐾(𝑋∗, 𝑋𝑗|𝜆)
∑𝑛

𝑙=1 𝐾(𝑋∗, 𝑋𝑙|𝜆)𝕀(𝑇𝑙 ≥ 𝑇𝑗)
)

where 𝐾 is a kernel function, usually 𝐾(𝑥, 𝑦|𝜆) = 𝕀(| ̂𝐹𝑋(𝑥) − ̂𝐹𝑋(𝑦)| < 𝜆), 𝜆 ∈ (0, 1],
̂𝐹𝑋 is the empirical distribution function of the training data, 𝑋1, ..., 𝑋𝑛, and 𝜆 is a hyper-

parameter. The estimator can be interpreted as a conditional Kaplan-Meier estimator which
is computed on a neighbourhood of subjects closest to 𝑋∗ (Blanche, Dartigues, and Jacqmin-
Gadda 2013). To account for tied survival times, the following adaptation of the estimator
is utilised (Blanche, Dartigues, and Jacqmin-Gadda 2013)

̂𝑆(𝜏 |𝑋∗, 𝒟𝑡𝑟𝑎𝑖𝑛, 𝜆) = ∏
𝑡∈𝒰𝑂,𝑡≤𝜏

(1 −
∑𝑛

𝑗=1 𝐾(𝑋∗, 𝑋𝑗|𝜆)𝕀(𝑇𝑗 = 𝑡, Δ𝑗 = 1)
∑𝑛

𝑗=1 𝐾(𝑋∗, 𝑋𝑗|𝜆)𝕀(𝑇𝑗 ≥ 𝑡) ) (11.3)

If 𝜆 = 1 then 𝐾(⋅|𝜆) = 1 and the estimator is identical to the Kaplan-Meier estimator.

The non-parametric nature of the model is highlighted in (Equation 11.3), in which both
the fitting and predicting stages are combined into a single equation. A new observation,
𝑋∗, is compared to its nearest neighbours from a training dataset, 𝒟𝑡𝑟𝑎𝑖𝑛, without a sep-
arated fitting procedure. One could consider splitting fitting and predicting in order to
clearly separate between training and testing data. In this case, the fitting procedure is the
estimation of ̂𝐹𝑋 on training data and the prediction is given by (Equation 11.3) with ̂𝐹𝑋
as an argument. This separated fit/predict method is implemented in survivalmodels (R.
Sonabend 2020). As with other non-parametric estimators, the Akritas estimator can still be
considered transparent and accessible. With respect to predictive performance, the Akritas
estimator has more explanatory power than non-parametric estimators due to conditioning
on covariates, however this is limited to a very small number of variables and therefore this
estimator is still best placed as a conditional baseline.

11.1.2 Continuous Ranking and Semi-Parametric Models: Cox PH
The Cox Proportional Hazards (CPH) (Cox 1972), or Cox model, is likely the most widely
known semi-parametric model and the most studied survival model (Habibi et al. 2018;
Moghimi-dehkordi et al. 2008; Reid 1994; P. Wang, Li, and Reddy 2019). The Cox model
assumes that the hazard for a subject is proportionally related to their explanatory variables,
𝑋1, ..., 𝑋𝑛, via some baseline hazard that all subjects in a given dataset share (‘the PH
assumption’). The hazard function in the Cox PH model is defined by

ℎ(𝜏|𝑋𝑖) = ℎ0(𝜏) exp(𝑋𝑖𝛽)
where ℎ0 is the non-negative baseline hazard function and 𝛽 = 𝛽1, ..., 𝛽𝑝 where 𝛽𝑖 ∈ ℝ
are coefficients to be fit. Note the proportional hazards (PH) assumption can be seen as

1Arguments and parameters are separated in function signatures by a pipe, ‘|’, where variables to the
left are parameters (free variables) and those to the right are arguments (fixed). In this equation, 𝜏 is a
parameter to be set by the user, and 𝑋∗, 𝒟𝑡𝑟𝑎𝑖𝑛, 𝜆 are fixed arguments. This could therefore be simplified
to ̂𝑆(𝜏) to only include free variables.
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the estimated hazard, ℎ(𝜏|𝑋𝑖), is directly proportional to the model covariates exp(𝑋𝑖𝛽).
Whilst a form is assumed for the ‘risk’ component of the model, exp(𝑋𝑖𝛽), no assumptions
are made about the distribution of ℎ0, hence the model is semi-parametric.

The coefficients, 𝛽, are estimated by maximum likelihood estimation of the ‘partial likeli-
hood’ (Cox 1975), which only makes use of ordered event times and does not utilise all
data available (hence being ‘partial’). The partial likelihood allows study of the informative
𝛽-parameters whilst ignoring the nuisance ℎ0. The predicted linear predictor, ̂𝜂 ∶= 𝑋∗ ̂𝛽, can
be computed from the estimated ̂𝛽 to provide a ranking prediction.

Inspection of the model is also useful without specifying the full hazard by interpreting the
coefficients as ‘hazard ratios’. Let 𝑝 = 1 and ̂𝛽 ∈ ℝ and let 𝑋𝑖, 𝑋𝑗 ∈ ℝ be the covariates of
two training observations, then the hazard ratio for these observations is the ratio of their
hazard functions,

ℎ(𝜏|𝑋𝑖)
ℎ(𝜏|𝑋𝑗)

= ℎ0(𝜏) exp(𝑋𝑖 ̂𝛽)
ℎ0(𝜏) exp(𝑋𝑗 ̂𝛽)

= exp( ̂𝛽)𝑋𝑖−𝑋𝑗

If exp( ̂𝛽) = 1 then ℎ(𝜏|𝑋𝑖) = ℎ(𝜏|𝑋𝑗) and thus the covariate has no effect on the hazard.
If exp( ̂𝛽) > 1 then 𝑋𝑖 > 𝑋𝑗 → ℎ(𝜏|𝑋𝑖) > ℎ(𝜏|𝑋𝑖) and therefore the covariate is positively
correlated with the hazard (increases risk of event). Finally if exp( ̂𝛽) < 1 then 𝑋𝑖 > 𝑋𝑗 →
ℎ(𝜏|𝑋𝑖) < ℎ(𝜏|𝑋𝑖) and the covariate is negatively correlated with the hazard (decreases risk
of event).

Interpreting hazard ratios is known to be a challenge, especially by clinicians who require
simple statistics to communicate to patients (Sashegyi and Ferry 2017; Spruance et al. 2004).
For example the full interpretation of a hazard ratio of ‘2’ for binary covariate 𝑋 would be:
‘assuming that the risk of death is constant at all time-points then the instantaneous risk of
death is twice as high in a patient with 𝑋 than without’. Simple conclusions are limited to
stating if patients are at more or less risk than others in their cohort. Further disadvantages
of the model also lie in its lack of real-world interpretabilitity, these include (Reid 1994):

• the PH assumption may not be realistic and the risk of event may not be constant over
time;

• the estimated baseline hazard from a non-parametric estimator is a discrete step-function
resulting in a discrete survival distribution prediction despite time being continuous; and

• the estimated baseline hazard will be constant after the last observed time-point in the
training set (Gelfand et al. 2000).

Despite these disadvantages, the model has been demonstrated to have excellent predictive
performance and routinely outperforms (or at least does not underperform) sophisticated
ML models (Michael F. Gensheimer and Narasimhan 2018; Luxhoj and Shyur 1997; Vanya
Van Belle, Pelckmans, Van Huffel, et al. 2011) (and (R. E. B. Sonabend 2021)). It’s simple
form and wide popularity mean that it is also highly transparent and accessible.

The next class of models address some of the Cox model disadvantages by making assump-
tions about the baseline hazard.

11.1.3 Conditional Distribution Predictions: Parametric Linear Models
Parametric Proportional Hazards

The CPH model can be extended to a fully parametric PH model by substituting the
unknown baseline hazard, ℎ0, for a particular parameterisation. Common choices for dis-



72 Classical Models

tributions are Exponential, Weibull and Gompertz (John D. Kalbfleisch and Prentice
2011; P. Wang, Li, and Reddy 2019); their hazard functions are summarised in ((tab-
survivaldists?)) along with the respective parametric PH model. Whilst an Exponential
assumption leads to the simplest hazard function, which is constant over time, this is often
not realistic in real-world applications. As such the Weibull or Gompertz distributions are
often preferred. Moreover, when the shape parameter, 𝛾, is 1 in the Weibull distribution or
0 in the Gompertz distribution, their hazards reduce to a constant risk ((Figure 11.1)). As
this model is fully parametric, the model parameters can be fit with maximum likelihood
estimation, with the likelihood dependent on the chosen distribution.

Table 11.2: Exponential, Weibull, and Gompertz hazard functions and PH specification.

Distribution1 ℎ0(𝜏)2 ℎ(𝜏|𝑋𝑖)3

Exp(𝜆) 𝜆 𝜆 exp(𝑋𝑖𝛽)
Weibull(𝛾, 𝜆) 𝜆𝛾𝜏𝛾−1 𝜆𝛾𝜏𝛾−1 exp(𝑋𝑖𝛽)
Gompertz(𝛾, 𝜆) 𝜆 exp(𝛾𝜏) 𝜆 exp(𝛾𝜏) exp(𝑋𝑖𝛽)

* 1. Distribution choices for baseline hazard. 𝛾, 𝜆 are shape and scale parameters respectively.
* 2. Baseline hazard function, which is the (unconditional) hazard of the distribution. * 3.
PH hazard function, ℎ(𝜏|𝑋𝑖) = ℎ0(𝜏) exp(𝑋𝑖𝛽).

Figure 11.1: Comparing the hazard curves under Weibull and Gompertz distributions for
varying values of the shape parameter; scale parameters are set so that each parametrisation
has a median of 20. x-axes are time and y-axes are Weibull (top) and Gompertz (bottom)
hazards as a function of time.
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In the literature, the Weibull distribution tends to be favoured as the initial assumption for
the survival distribution (Michael F. Gensheimer and Narasimhan 2018; Habibi et al. 2018;
Hielscher et al. 2010; R. and J. 1968; Rahman et al. 2017), though Gompertz is often tested
in death-outcome models for its foundations in modelling human mortality (Gompertz 1825).
There exist many tests for checking the goodness-of-model-fit (?@sec-eval-insample) and
the distribution choice can even be treated as a model hyper-parameter. Moreover it tran-
spires that model inference and predictions are largely insensitive to the choice of distribu-
tion (Collett 2014; Reid 1994). In contrast to the Cox model, fully parametric PH models
can predict absolutely continuous survival distributions, they do not treat the baseline haz-
ard as a nuisance, and in general will result in more precise and interpretable predictions if
the distribution is correctly specified (Reid 1994; Patrick Royston and Parmar 2002).

Whilst misspecification of the distribution tends not to affect predictions too greatly, PH
models will generally perform worse when the PH assumption is not valid. PH models can
be extended to include time-varying coefficients or model stratification (Cox 1972) but even
with these adaptations the model may not reflect reality. For example, the predicted hazard
in a PH model will be either monotonically increasing or decreasing but there are many
scenarios where this is not realistic, such as when recovering from a major operation where
risks tends to increase in the short-term before decreasing. Accelerated failure time models
overcome this disadvantage and allow more flexible modelling, discussed next.

Accelerated Failure Time

In contrast to the PH assumption, where a unit increase in a covariate is a multiplica-
tive increase in the hazard rate, the Accelerated Failure Time (AFT) assumption means
that a unit increase in a covariate results in an acceleration or deceleration towards death
(expanded on below). The hazard representation of an AFT model demonstrates how the
interpretation of covariates differs from PH models,

ℎ(𝜏|𝑋𝑖) = ℎ0(exp(−𝑋𝑖𝛽)𝜏) exp(−𝑋𝑖𝛽)

where 𝛽 = (𝛽1, ..., 𝛽𝑝) are model coefficients. In contrast to PH models, the ‘risk’ component,
exp(−𝑋𝑖𝛽), is the exponential of the negative linear predictor and therefore an increase in
a covariate value results in a decrease of the predicted hazard. This representation also
highlights how AFT models are more flexible than PH as the predicted hazard can be non-
monotonic. For example the hazard of the Log-logistic distribution ((Figure 11.2)) is highly
flexible depending on chosen parameters. Not only can the AFT model offer a wider range
of shapes for the hazard function but it is more interpretable. Whereas covariates in a PH
model act on the hazard, in an AFT they act on time, which is most clearly seen in the
log-linear representation,

log𝑌𝑖 = 𝜇 + 𝛼1𝑋𝑖1 + 𝛼2𝑋𝑖2 + ... + 𝛼𝑝𝑋𝑖𝑝 + 𝜎𝜖𝑖

where 𝜇 and 𝜎 are location and scale parameters respectively, 𝛼1, ..., 𝛼𝑝 are model coeffi-
cients, and 𝜖𝑖 is a random error term. In this case a one unit increase in covariate 𝑋𝑖𝑗 means
a 𝛼𝑗 increase in the logarithmic survival time. For example if exp(𝑋𝑖𝛼) = 0.5 then 𝑖 ‘ages’ at
double the baseline ‘speed’. Or less abstractly if studying the time until death from cancer
then exp(𝑋𝑖𝛼) = 0.5 can be interpreted as ‘the entire process from developing tumours to
metastasis and eventual death in subject 𝑖 is twice as fast than the normal’, where ‘normal’
refers to the baseline when all covariates are 0.
Specifying a particular distribution for 𝜖𝑖 yields a fully-parametric AFT model. Common
distribution choices include Weibull, Exponential, Log-logistic, and Log-Normal (John D.
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Kalbfleisch and Prentice 2011; P. Wang, Li, and Reddy 2019). The Buckley-James estimator
(Buckley and James 1979) is a semi-parametric AFT model that non-parametrically esti-
mates the distribution of the errors however this model has no theoretical justification and
is rarely fit in practice (Wei 1992). The fully-parametric model has theoretical justifications,
natural interpretability, and can often provide a better fit than a PH model, especially when
the PH assumption is violated (Patel, Kay, and Rowell 2006; Qi 2009; Zare et al. 2015).

Figure 11.2: Log-logistic hazard curves with a fixed scale parameter of 1 and a changing
shape parameter. x-axis is time and y-axis is the log-logistic hazard as a function of time.

Proportional Odds

Proportional odds (PO) models (Bennett 1983) fit a proportional relationship between
covariates and the odds of survival beyond a time 𝜏 ,

𝑂𝑖(𝜏) = 𝑆𝑖(𝜏)
𝐹𝑖(𝜏) = 𝑂0(𝜏) exp(𝑋𝑖𝛽)

where 𝑂0 is the baseline odds.

In this model, a unit increase in a covariate is a multiplicative increase in the odds of survival
after a given time and the model can be interpreted as estimating the log-odds ratio. There
is no simple closed form expression for the partial likelihood of the PO model and hence in
practice a Log-logistic distribution is usually assumed for the baseline odds and the model
is fit by maximum likelihood estimation on the full likelihood (Bennett 1983).

Perhaps the most useful feature of the model is convergence of hazard functions (Kirmani
and Gupta 2001), which states ℎ𝑖(𝜏)/ℎ0(𝜏) → 1 as 𝜏 → ∞. This property accurately reflects
real-world scenarios, for example if comparing chemotherapy treatment on advanced cancer
survival rates, then it is expected that after a long period (say 10 years) the difference in risk
between groups is likely to be negligible. This is in contrast to the PH model that assumes
the hazard ratios are constant over time, which is rarely a reflection of reality.
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In practice, the PO model is harder to fit and is less flexible than PH and AFT models, both
of which can also produce odds ratios. This may be a reason for the lack of popularity of
the PO model, in addition there is limited off-shelf implementations (Collett 2014). Despite
PO models not being commonly utilised, they have formed useful components of neural
networks (Section 16.1) and flexible parametric models (below).

Flexible Parametric Models – Splines

Royston-Parmar flexible parametric models (Patrick Royston and Parmar 2002) extend PH
and PO models by estimating the baseline hazard with natural cubic splines. The model
was designed to keep the form of the PH or PO methods but without the semi-parametric
problem of estimating a baseline hazard that does not reflect reality (see above), or the
parametric problem of misspecifying the survival distribution.

To provide an interpretable, informative and smooth hazard, natural cubic splines are fit in
place of the baseline hazard. The crux of the method is to use splines to model time on a
log-scale and to either estimate the log cumulative Hazard for PH models, log𝐻(𝜏|𝑋𝑖) =
log𝐻0(𝜏) + 𝑋𝑖𝛽, or the log Odds for PO models, log𝑂(𝜏|𝑋𝑖) = log𝑂0(𝜏) + 𝑋𝑖𝛽, where 𝛽
are model coefficients to fit, 𝐻0 is the baseline cumulative hazard function and 𝑂0 is the
baseline odds function. For the flexible PH model, a Weibull distribution is the basis for the
baseline distribution and a Log-logistic distribution for the baseline odds in the flexible PO
model. log𝐻0(𝜏) and log𝑂0(𝜏) are estimated by natural cubic splines with coefficients fit by
maximum likelihood estimation. The standard full likelihood is optimised, full details are
not provided here. Between one and three internal knots are recommended for the splines
and the placement of knots does not greatly impact upon the fitted model (Patrick Royston
and Parmar 2002).

Advantages of the model include being: interpretable, flexible, can be fit with time-
dependent covariates, and it returns a continuous function. Moreover many of the parame-
ters, including the number and position of knots, are tunable, although Royston and Parmar
advised against tuning and suggest often only one internal knot is required (Patrick Royston
and Parmar 2002). A recent simulation study demonstrated that even with an increased
number of knots (up to seven degrees of freedom), there was little bias in estimation of
the survival and hazard functions (Bower et al. 2019). Despite its advantages, a 2018 re-
view (Ng et al. 2018) found only twelve instances of published flexible parametric models
since Royston and Parmar’s 2002 paper, perhaps because it is more complex to train, has a
less intuitive fitting procedure than alternatives, and has limited off-shelf implementations;
i.e. is less transparent and accessible than parametric alternatives.

The PH and AFT models are both very transparent and accessible, though require slightly
more expert knowledge than the CPH in order to specify the ‘correct’ underlying prob-
ability distribution. Interestingly whilst there are many papers comparing PH and AFT
models to one another using in-sample metrics (?@sec-eval-insample) such as AIC (Geor-
gousopoulou et al. 2015; Habibi et al. 2018; Moghimi-dehkordi et al. 2008; Zare et al. 2015),
no benchmark experiments could be found for out-of-sample performance. PO and spline
models are less transparent than PH and AFT models and are even less accessible, with
very few implementations of either. No conclusions can be drawn about the predictive per-
formance of PO or spline models due to a lack of suitable benchmark experiments.
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Machine Learning Survival Models

TODO (150-200 WORDS)

Major changes expected!

This page is a work in progress and major changes will be made over time.

12.1 A Survey of Machine Learning Models for Survival Analysis
These next sections provide a technical, critical survey of machine learning models proposed
for survival analysis with the focus on the ‘simpler’ setup of non-competing risks. Models are
separated into their different ‘classes’ (3), which exists as a natural taxonomy in machine
learning. Each class review is then further separated by first discussing the simpler and
more standard regression setting, before expanding into their survival framework. The focus
is once again on the different predict types of the model, which enables clear exposition
and discussion around how some areas have successfully dealt with the survival predictive
problem, whereas others have fallen short.

This is not the first survey of machine learning models for survival analysis. A recent 2017
survey (P. Wang, Li, and Reddy 2019) focused on covering the breadth of machine learning
models for survival analysis and this survey is recommended to the reader as a strong
starting point to understand which ML models are available for survival analysis. However
whilst this provides a comprehensive review and a ‘big-picture’ view, there is no discussion
about how successful the discussed models are in solving the survival task.

A comprehensive survey of neural networks was presented by Schwarzer et al. (2000)
(Schwarzer, Vach, and Schumacher 2010) in which the authors collected the many ways
in which neural networks have been ‘misused’ in the context of survival analysis. This level
of criticism is vital in the context of survival analysis and healthcare data as transparency
and understanding are often prioritised over predictive performance. Whilst the survey in
this book will try not to be as critical as the Schwarzer review, it will aim to discuss models
and how well they actually solve the survival problem.

Historically, surveys have focused primarily on predictive performance, which is generally
preferred for complex classification and regression tasks. However in the context of survival
analysis, transparency is of the utmost importance and any model that does not solve the
task it claims to, despite strong predictive performance, can be considered sub-optimal.
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The survey will also examine the accessibility of survival models. A model need not be
open-source to be accessible, but it should be ‘user-friendly’ and not require expert cross-
domain knowledge. For example, a neural network may require knowledge of complex model
building, but if set-up correctly could be handled without medical or survival knowledge.
Whereas a Gaussian Process requires knowledge of the model class, simulation, (usually)
Bayesian modelling, and also survival analysis.

(3) provides information about the models reviewed in this survey, including a model
reference for use in the (R. E. B. Sonabend 2021) benchmark experiment, the
predict types of the model, and in which R package it is implemented.

Table 12.1: Summarising the models discussed in (Section 12.1) by their model class and
respective survival task.

Class1 Name2 Authors (Year)3 Task4 Implementation5

RF RRT LeBlanc and
Crowley (1992)
(LeBlanc and
Crowley 1992)

Rank rpart (Therneau
and Atkinson
2019)

RF RSDF-DEV Hothorn et al.
(2004) (Hothorn et
al. 2004)

Prob. ipred (Peters and
Hothorn 2019)

RF RRF Ishwaran et al.
(2004) (H.
Ishwaran et al.
2004)

Rank -

RF RSCIFF Hothorn et al.
(2006) (Hothorn et
al. 2005)

Det., Prob. party (Hothorn,
Hornik, and Zeileis
2006), partykit
(Hothorn and
Zeileis 2015)

RF RSDF-
STAT

Ishwaran et al.
(2008) (B. H.
Ishwaran et al.
2008)

Prob. randomForestSRC
(H. Ishwaran and
Kogalur 2018),
ranger (Wright
and Ziegler 2017)

GBM GBM-COX Ridgeway (1999)
(Ridgeway 1999)
& Buhlmann
(2007) (Buhlmann
and Hothorn
2007)

Prob. mboost (Hothorn
et al. 2020),
xgboost (T.
Chen et al. 2020),
gbm (Greenwell
et al. 2019)

GBM CoxBoost Binder &
Schumacher (2008)
(Harald Binder
and Schumacher
2008)

Prob. CoxBoost
(Harold Binder
2013)
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Class1 Name2 Authors (Year)3 Task4 Implementation5

GBM GBM-AFT Schmid &
Hothorn (2008)
(Schmid and
Hothorn 2008b)

Det. mboost, xgboost

GBM GBM-
BUJAR

Wang & Wang
(2010) (Z. Wang
and Wang 2010)

Det. bujar (Z. Wang
2019)

GBM GBM-GEH Johnson & Long
(2011) (Johnson
and Long 2011)

Det. mboost

GBM GBM-UNO Mayr & Schmid
(2014) (Mayr and
Schmid 2014)

Rank mboost

SVM SVCR Shivaswamy et al.
(2007)
(Shivaswamy, Chu,
and Jansche 2007)

Det. survivalsvm
(Fouodo et al.
2018)

SVM SSVM-Rank Van Belle et al.
(2007) (Vanya Van
Belle et al. 2007)

Rank survivalsvm

SVM SVRc Khan and Zubek
(2008) (Khan and
Bayer Zubek 2008)

Det. -

SVM SSVM-
Hybrid

Van Belle (2011)
(Vanya Van Belle,
Pelckmans, Van
Huffel, et al. 2011)

Det. survivalsvm

SVM SSVR-MRL Goli et al. (2016)
(Goli, Mahjub,
Faradmal, and
Soltanian 2016;
Goli, Mahjub,
Faradmal,
Mashayekhi, et al.
2016)

Det. -

ANN ANN-CDP Liestøl et al.
(1994) (Liestol,
Andersen, and
Andersen 1994)

Prob. -

ANN ANN-COX Faraggi and Simon
(1995) (Faraggi
and Simon 1995)

Rank -

ANN PLANN Biganzoli et al.
(1998) (E.
Biganzoli et al.
1998)

Prob. -

ANN COX-NNET Ching et al. (2018)
(Ching, Zhu, and
Garmire 2018)

Prob. cox-nnet∗ (Ching
2015)
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Class1 Name2 Authors (Year)3 Task4 Implementation5

ANN DeepSurv Katzman et al.
(2018) (J. L.
Katzman et al.
2018)

Prob. survivalmodels
(R. Sonabend
2020)

ANN DeepHit Lee et al. (2018)
(C. Lee et al.
2018)

Prob. survivalmodels

ANN Nnet-
survival

Gensheimer &
Narasimhan
(2019) (Michael F.
Gensheimer and
Narasimhan 2019)

Prob. survivalmodels

ANN Cox-Time Kvamme et al.
(2019) (Kvamme,
Borgan, and
Scheel 2019)

Prob. survivalmodels

ANN PC-Hazard Kvamme &
Borgan (2019)
(Kvamme2019?)

Prob. survivalmodels

ANN RankDeepSurvJing et al. (2019)
(Jing et al. 2019)

Det. RankDeepSurv∗,†

(Jing et al. 2018)
ANN DNNSurv Zhao & Fend

(2020) (Zhao and
Feng 2020)

Prob. survivalmodels

* 1. Model Class. RSF – Random Survival Forest; GBM – Gradient Boosting Machine;
SVM – Support Vector Machine; ANN – Artificial Neural Network. There is some abuse
of notation here as some of the RSFs are actually decision trees and some GBMs do not
use gradient boosting. * 2. Model identifier used in this section and (R. E. B. Sonabend
2021). * 3. Authors and year of publication, for RSFs this is the paper most attributed to
the algorithm. * 4. Survival task type: Deterministic (Det.), Probabilistic (Prob.), Ranking
(Rank). * 5. If available in R then the package in which the model is implemented, otherwise
‘∗’ signifies a model is only available in Python. With the exception of DNNSurv, all ANNs
in survivalmodels are implemented from the Python package pycox (Kvamme 2018) with
reticulate (Ushey, Allaire, and Tang 2020). * † – Code available to create model but not
implemented ‘off-shelf’.
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TODO (150-200 WORDS)

Major changes expected!

This page is a work in progress and major changes will be made over time.

13.1 Random Forests
13.1.1 Random Forests for Regression
Random forests are a composite algorithm built by fitting many simpler component models,
decision trees, and then averaging the results of predictions from these trees. Decision trees
are first briefly introduced before the key ‘bagging’ algorithm that composes these trees to
a random forest. Woodland terminology is used throughout this subsection.

Decision Trees

Decision trees are a common model class in machine learning and have the advantage of
being (relatively) simple to implement and highly interpretable. A decision tree takes a set
of inputs and a given splitting rule in order to create a series of splits, or branches, in the tree
that culminates in a final leaf, or terminal node. Each terminal node has a corresponding
prediction, which for regression is usually the sample mean of the training outcome data.
This is made clearer by example, (Figure 13.1) demonstrates a decision tree predicting the
miles per gallon (mpg) of a car from the mtcars (Henderson and Velleman 1981) dataset.
With this tree a new prediction is made by feeding the input variables from the top to the
bottom, for example given new data, 𝑥 = {‵𝑤𝑡‵ = 3,‵ 𝑑𝑖𝑠𝑝‵ = 250}, then in the first split
the right branch is taken as wt = 3 > 2.32 and in the second split the left branch is taken
as disp = 250 ≤ 258, therefore the new data point ‘lands’ in the final leaf and is predicted
to have an mpg of 20.8. This value of 20.8 arises as the sample mean of mpg for the 11
(which can be seen in the box) observations in the training data who were sorted into this
terminal node. Algorithmically, as splits are always binary, predictions are simply a series
of conditional logical statements.
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82 Tree-Based Methods

Figure 13.1: Demonstrating classification trees using the mtcars (Henderson and Velleman
1981) dataset and the party (Hothorn, Hornik, and Zeileis 2006) package. Ovals are leaves,
which indicate the variable that is being split. Edges are branches, which indicate the cut-off
at which the variable is split. Rectangles are terminal nodes and include information about
the number of training observations in the node and the terminal node prediction.
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Splitting Rules

Precisely how the splits are derived and which variables are utilised is determined by the
splitting rule.1 In regression, the most common splitting rule is to select the cut-off for a
given variable that minimises the mean squared error in each hypothetical resultant leaf.
The goal is to find the variable and cutoff that leads to the greatest difference between the
two resultant leaves and thus the maximal homogeneity within each leaf. For all decision
tree and random forest algorithms going forward, let 𝐿 denote some leaf, then let 𝐿𝑥𝑦, 𝐿𝑥, 𝐿𝑦
respectively be the set of observations, features, and outcomes in leaf 𝐿. Let 𝐿𝑦;𝑖 be the 𝑖th
outcome in 𝐿𝑦 and finally let 𝐿 ̄𝑦 = 1

𝑛 ∑𝑛
𝑖=1 𝐿𝑦;𝑖. To simplify notation, 𝑖 ∈ 𝐿 is taken to be

equivalent to 𝑖 ∈ {𝑖 ∶ 𝑋𝑖 ∈ 𝐿𝑋}, i.e. the indices of the observations in leaf 𝐿.
Let 𝑐 ∈ ℝ be some cutoff parameter and let 𝐿𝑎

𝑥𝑦(𝑗, 𝑐) ∶= {(𝑋𝑖, 𝑌𝑖)|𝑋𝑖𝑗 < 𝑐, 𝑖 =
1, ..., 𝑛}, 𝐿𝑏

𝑥𝑦(𝑗, 𝑐) = {(𝑋𝑖, 𝑌𝑖)|𝑋𝑖𝑗 ≥ 𝑐, 𝑖 = 1, ..., 𝑛} be the two leaves containing the set
of observations resulting from partitioning variable 𝑗 at cutoff 𝑐. Then a split is determined
by finding the arguments, (𝑗∗, 𝑐∗) that minimise the sum of the mean squared errors (MSE)
in both leaves (James et al. 2013),

(𝑗∗, 𝑐∗) = argmin
𝑗,𝑐

∑
𝑦∈𝐿𝑎𝑦(𝑗,𝑐)

(𝑦 − 𝐿𝑎
̄𝑌 (𝑗, 𝑐))2 + ∑

𝑦∈𝐿𝑏𝑦(𝑗,𝑐)
(𝑦 − 𝐿𝑏

̄𝑌 (𝑗, 𝑐))2 (13.1)

This method is repeated from the first branch of the tree down to the very last such that
observations are included in a given leaf 𝐿 if they satisfy all conditions from all previous
branches; features may be considered multiple times in the growing process. This is an
intuitive method as minimising the above sum results in the set of observations within each
individual leaf being as similar as possible, thus as an observation is passed down the tree,
it becomes more similar to the subsequent leaves, eventually landing in a leaf containing
homogeneous observations. Controlling how many variables to consider at each split and
how many splits to make are determined by hyper-parameter tuning.

Decision trees are a powerful method for high-dimensional data as only a small sample of
variables will be used for growing a tree, and therefore they are also useful for variable im-
portance by identifying which variables were utilised in growth (other importance methods
are also available). Decision trees are also highly interpretable, as demonstrated by (Fig-
ure 13.1). The recursive pseudo-algorithm in ((alg-dt-fit?)) demonstrates the simplicity in
growing a decision tree (again methods such as pruning are omitted).

Algorithm 1 Fitting a decision tree.
**Input** Training data, 𝒟𝑡𝑟𝑎𝑖𝑛. Splitting rule, 𝑆𝑅.
**Output** Fitted decision tree, ̂𝑔.

1: Compute (𝑗∗, 𝑐∗) as the optimisers of 𝑆𝑅 (e.g. (@eq-dt-min)) to create the initial leaf
and branches.

2: Repeat step 1 on all subsequent branches until a stopping rule is reached.
3: Return the fitted tree, ̂𝑔, as the series of branches.

Stopping Rules

The ‘stopping rule’ in ((alg-dt-fit?)) is usually a condition on the number of observations
in each leaf such that leaves will continue to be split until some minimum number of ob-
servations has been reached in a leaf. Other conditions may be on the ‘depth’ of the tree,

1Other methods for growing trees such as pruning are not discussed here as they are less relevant to
random forests, which are primarily of interest. Instead see (e.g.) Breiman (1984) [@Breiman1984].
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which corresponds to the number of levels of splitting, for example the tree in (Figure 13.1)
has a depth of 2 (the first level is not counted).

Random Forests

Despite being more interpretable than other machine learning methods, decision trees usu-
ally have poor predictive performance, high variance and are not robust to changes in the
data. As such, random forests are preferred to improve prediction accuracy and decrease
variance. Random forests utilise bootstrap aggregation, or bagging (Breiman 1996), to ag-
gregate many decision trees. A pseudo fitting algorithm is given in ((alg-rsf-fit?)).

Algorithm 2 Fitting a random forest.
**Input** Training data, 𝒟𝑡𝑟𝑎𝑖𝑛. Total number of trees, 𝐵 ∈ ℕ>0.
**Output** Fitted random forest, ̂𝑔.

1: for 𝑏 = 1, ..., 𝐵 do
2: Create a bootstrapped sample of the data, 𝐷𝑏.
3: Grow a decision tree, ̂𝑔𝑏, on 𝐷𝑏 with (@alg-dt-fit).
4: end for
5: ̂𝑔 ← { ̂𝑔𝑏}𝐵

𝑏=1 return ̂𝑔

Prediction from a random forest follows by making predictions from the individual trees
and aggregating the results by some function 𝜎 ((alg-rsf-pred?)); 𝜎 is usually the sample
mean for regression,

̂𝑔(𝑋∗) = 𝜎( ̂𝑔1(𝑋∗), ..., ̂𝑔𝐵(𝑋∗)) = 1
𝐵

𝐵
∑
𝑏=1

̂𝑔𝑏(𝑋∗)

where ̂𝑔𝑏(𝑋∗) is the terminal node prediction from the 𝑏th tree and 𝐵 are the total number of
grown trees ($B$' is commonly used instead of𝑁 ’ to note the relation to bootstrapped
data).

Algorithm 3 Predicting from a random forest.
**Input** Testing data 𝑋∗ ∼ 𝒳, fitted forest ̂𝑔 with 𝐵 ∈ ℕ>0 trees, aggregation method 𝜎.
**Output** Prediction, ̂𝑌 ∼ 𝒴.

1: for 𝑏 = 1, ..., 𝐵 do
2: ’Drop’ 𝑋∗ down the tree ̂𝑔𝑏 individually to return a prediction ̂𝑔𝑏(𝑋∗).
3: end for
4: ̂𝑌 ← 𝜎( ̂𝑔1(𝑋∗), ..., ̂𝑔𝐵(𝑋∗)) return ̂𝑌

Usually many (hundreds or thousands) trees are grown, which makes random forests robust
to changes in data and ‘confident’ about individual predictions. Other advantages include
having several tunable hyper-parameters, including: the number of trees to grow, the number
of variables to include in a single tree, the splitting rule, and the minimum terminal node
size. Machine learning models with many hyper-parameters, tend to perform better than
other models as they can be fine-tuned to the data, which is why complex deep learning
models are often the best performing. Although as a caveat: too many parameters can lead
to over-fitting and tuning many parameters can take a long time and be highly intensive.
Random forests lose the interpretability of decision trees and are considered ‘black-box’
models as individual predictions cannot be easily scrutinised.



Random Forests 85

13.1.2 Random Forests for Survival Analysis
Given time constraints and the scope of this book, this survey of random forests for survival
analysis will primarily focus on ‘traditional’ decision trees and random forests and will not
look at other sub-fields such as causal forests. A comprehensive review of random survival
forests (RSFs) is provided in Bou-Hamad (2011) (Bou-Hamad, Larocque, and Ben-Ameur
2011), which includes extensions to time-varying covariates and different censoring types.
In order to prevent overlap, this survey will focus primarily on methods that have off-shelf
implementations, their prediction types, and how successfully these methods handle the
problem of censoring. Random forests and decision trees for survival are termed from here
as Random Survival Forests (RSFs) and Survival Decision Trees (SDTs) respectively.

Unlike other machine learning methods that may require complex changes to underlying
algorithms, individual components of a random forest can be adapted without altering the
fundamental algorithm. The principle random forest algorithm is unchanged for RSFs, the
difference is in the choice of splitting rule and terminal node prediction, which both must be
able to handle censoring. Therefore instead of discussing individual algorithms, the different
choices of splitting rules and terminal node predictions are discussed, then combinations of
these are summarised into five distinct algorithms.

13.1.2.1 Splitting Rules

Survival trees and RSFs have been studied for the past four decades and whilst the amount
of splitting rules to appear could be considered “numerous” (Bou-Hamad, Larocque, and
Ben-Ameur 2011), only two broad classes are commonly utilised and implemented (H. Ish-
waran and Kogalur 2018; Pölsterl 2020; Therneau and Atkinson 2019; Wright and Ziegler
2017). The first class rely on hypothesis tests, and primarily the log-rank test, to maximise
dissimilarity between splits, the second class utilises likelihood-based measures. The first is
discussed in more detail as this is common in practice and is relatively straightforward to im-
plement and understand, moreover it has been demonstrated to outperform other splitting
rules (Bou-Hamad, Larocque, and Ben-Ameur 2011). Likelihood rules are more complex
and require assumptions that may not be realistic, these are discussed briefly.

Hypothesis Tests

The log-rank test statistic has been widely utilised as the ‘natural’ splitting-rule for sur-
vival analysis (Ciampi et al. 1986; B. H. Ishwaran et al. 2008; LeBlanc and Crowley 1993;
Segal 1988). The log-rank test compares the survival distributions of two groups and has
the null-hypothesis that both groups have the same underlying risk of (immediate) death,
i.e. identical hazard functions.

Let 𝐿𝐴 and 𝐿𝐵 be two leaves then using the notation above let ℎ𝐴, ℎ𝐵 be the (true) haz-
ard functions derived from the observations in the two leaves respectively. The log-rank
hypothesis test is given by 𝐻0 ∶ ℎ𝐴 = ℎ𝐵 with test statistic (Segal 1988),

𝐿𝑅(𝐿𝐴) =
∑𝜏∈𝒰𝐷

(𝑑𝐴
𝜏 − 𝑒𝐴

𝜏 )

√∑𝜏∈𝒰𝐷
𝑣𝐴𝜏

where 𝑑𝐴
𝜏 is the observed number of deaths in leaf 𝐴 at 𝜏 ,

𝑑𝐴
𝜏 ∶= ∑

𝑖∈𝐿𝐴
𝕀(𝑇𝑖 = 𝜏, Δ𝑖 = 1)
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𝑒𝐴
𝜏 is the expected number of deaths in leaf 𝐴 at 𝜏 ,

𝑒𝐴
𝜏 ∶= 𝑛𝐴

𝜏 𝑑𝜏
𝑛𝜏

and 𝑣𝐴
𝜏 is the variance of the number of deaths in leaf 𝐴 at 𝜏 ,

𝑣𝐴
𝜏 ∶= 𝑒𝐴

𝜏 (𝑛𝜏 − 𝑑𝜏
𝑛𝜏

)(𝑛𝜏 − 𝑛𝐴
𝜏

𝑛𝜏 − 1 )

where 𝒰𝐷 is the set of unique death times across the data (in both leaves), \ 𝑛𝜏 = ∑𝑖 𝕀(𝑇𝑖 ≥
𝜏) is the number of observations at risk at 𝜏 in both leaves, \ 𝑛𝐴

𝜏 = ∑𝑖∈𝐿𝐴 𝕀(𝑇𝑖 ≥ 𝜏) is
the number of observations at risk at 𝜏 in leaf A, and \ 𝑑𝜏 = ∑𝑖 𝕀(𝑇𝑖 = 𝜏, Δ𝑖 = 1) is the
number of deaths at 𝜏 in both leaves.

Intuitively these results follow as the number of deaths in a leaf is distributed according
to Hyper(𝑛𝐴

𝜏 , 𝑛𝜏 , 𝑑𝜏). The same statistic results if 𝐿𝐵 is instead considered. ((alg-dt-fit?))
follows for fitting decision trees with the log-rank splitting rule, 𝑆𝑅, to be maximised.

The higher the log-rank statistic, the greater the dissimilarity between the two groups,
thereby making it a sensible splitting rule for survival, moreover it has been shown that
it works well for splitting censored data (LeBlanc and Crowley 1993).2 When censoring
is highly dependent on the outcome, the log-rank statistic does not perform well and is
biased (Bland and Altman 2004), which tends to be true of the majority of survival models.
Additionally, the log-rank test requires no knowledge about the shape of the survival curves
or distribution of the outcomes in either group (Bland and Altman 2004), making it ideal
for an automated process that requires no user intervention.

The log-rank score rule (Hothorn and Lausen 2003) is a standardized version of the log-rank
rule that could be considered as a splitting rule, though simulation studies have demon-
strated non-significant predictive performance when comparing the two (B. H. Ishwaran et
al. 2008).

Alternative dissimiliarity measures and tests have also been suggested as splitting rules, in-
cluding modified Kolmogorov-Smirnov test and Gehan-Wilcoxon tests (Ciampi et al. 1988).
Simulation studies have demonstrated that both of these may have higher power and pro-
duce ‘better’ results than the log-rank statistic (Fleming et al. 1980). Despite this, these
do not appear to be in common usage and no implementation could be found that include
these.

#### Likelihood Based Rules {.unnumbered .unlisted} Likelihood ratio statistics, or de-
viance based splitting rules, assume a certain model form and thereby an assumption about
the data. This may be viewed as an advantageous strategy, as it could arguably increase
interpretability, or a disadvantage as it places restrictions on the data. For survival models,
a full-likelihood can be estimated with a Cox form by estimating the cumulative hazard
function (LeBlanc and Crowley 1992). LeBlanc and Crowley (1992) (LeBlanc and Crowley
1992) advocate for selecting the optimal split by maximising the full PH likelihood, assuming
the cumulative hazard function, 𝐻, is known,

ℒ ∶=
𝑀
∏
𝑚=1

∏
𝑖∈𝐿𝑚

ℎ𝑚(𝑇𝑖)Δ𝑖 exp(−𝐻𝑚(𝑇𝑖))

2The results of this experiment are actually in LeBlanc’s unpublished 1989 PhD thesis and therefore it
has to be assumed that LeBlanc is accurately conveying its results in this 1993 paper.
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where 𝑀 is the total number of terminal nodes, ℎ𝑚 and 𝐻𝑚 are the (true) hazard and
cumulative hazard functions in the 𝑚th node, and again 𝐿𝑚 is the set of observations in
terminal node 𝑚. Estimation of ℎ𝑚 and 𝐻𝑚 are described with the associated terminal
node prediction below.

The primary advantage of this method is that any off-shelf regression software with a like-
lihood splitting rule can be utilised without any further adaptation to model fitting by
supplying this likelihood with required estimates. However the additional costs of comput-
ing these estimates may outweigh the benefits once the likelihood has been calculated, and
this could be why only one implementation of this method has been found (Bou-Hamad,
Larocque, and Ben-Ameur 2011; Therneau and Atkinson 2019).

Other Splitting Rules

As well as likelihood and log-rank spitting rules, other papers have studied comparison of
residuals (Therneau, Grambsch, and Fleming 1990), scoring rules (H. Ishwaran and Kogalur
2018), and distance metrics (Gordon and Olshen 1985). These splitting rules work similarly
to the mean squared error in the regression setting, in which the score should be minimised
across both leaves. The choice of splitting rule is usually data-dependent and can be treated
as a hyper-parameter for tuning. However if there is a clear goal in prediction, then the
choice of splitting rule can be informed by the prediction type. For example, if the goal is
to maximise separation, then a log-rank splitting rule to maximise homogeneity in terminal
nodes is a natural starting point. Whereas if the goal is to estimate the linear predictor of
a Cox PH model, then a likelihood splitting rule with a Cox form may be more sensible.

13.1.2.2 Terminal Node Prediction

Only two terminal node predictions appear in common usage.

Predict: Ranking

Terminal node ranking predictions for survival trees and forests have been limited to those
that use a likelihood-based splitting rule and assume a PH model form (H. Ishwaran et
al. 2004; LeBlanc and Crowley 1992). In model fitting the likelihood splitting rule model
attempts to fit the (theoretical) PH model ℎ𝑚(𝜏) = ℎ0(𝜏)𝜃𝑚 for 𝑚 ∈ 1, ..., 𝑀 where 𝑀 is
the total number of terminal nodes and 𝜃𝑚 is a parameter to estimate. The model returns
predictions for exp( ̂𝜃𝑚) where ̂𝜃𝑚 is the estimate of 𝜃𝑚. This is estimated via an iterative
procedure in which in iteration 𝑗 + 1, ̂𝜃𝑗+1

𝑚 is estimated by

̂𝜃𝑗+1
𝑚 =

∑𝑖∈𝐿𝑚 Δ𝑖

∑𝑖∈𝐿𝑚 𝐻̂𝑗
0(𝑇𝑖)

where as before 𝐿𝑚 is the set of observations in leaf 𝑚 and

𝐻̂𝑗
0(𝜏) =

∑𝑖∶𝑇𝑖≤𝜏 Δ𝑖

∑𝑀
𝑚=1 ∑{𝑖∶𝑖∈ℛ𝜏∩𝐿𝑎}

̂𝜃𝑗
𝑚

which is repeated until some stopping criterion is reached. The same cumulative hazard is
estimated for all nodes however ̂𝜃𝑚 varies across nodes. This method lends itself naturally
to a composition to a full distribution (Chapter 19) as it assumes a PH form and separately
estimates the cumulative hazard and relative risk (?@sec-surv-ml-models-ranfor-nov),
though no implementation of this composition could be found.
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Predict: Survival Distribution

The most common terminal node prediction appears to be predicting the survival distribu-
tion by estimating the survival function, using the Kaplan-Meier or Nelson-Aalen estimators,
on the sample in the terminal node (Hothorn et al. 2004; B. H. Ishwaran et al. 2008; LeBlanc
and Crowley 1993; Segal 1988). Estimating a survival function by a non-parametric estima-
tor is a natural choice for terminal node prediction as these are natural ‘baselines’ in survival,
similarly to taking the sample mean in regression. The prediction for SDTs is straightfor-
ward, the non-parametric estimator is fit on all observations in each of the terminal nodes.
This is adapted to RSFs by bagging the estimator across all decision trees (Hothorn et al.
2004). Using the Nelson-Aalen estimator as an example, let 𝑚 be a terminal node in an
SDT, then the terminal node prediction is given by,

𝐻̂𝑚(𝜏) = ∑
{𝑖∶𝑖∈𝐿𝑚∩𝑇𝑖≤𝜏}

𝑑𝑖
𝑛𝑖

(13.2)

where 𝑑𝑖 and 𝑛𝑖 are the number of events and observations at risk at time 𝑇𝑖 in terminal node
𝑚. Ishwaran (B. H. Ishwaran et al. 2008) defined the bootstrapped Nelson-Aalen estimator
as

𝐻̂𝐵𝑜𝑜𝑡(𝜏) = 1
𝐵

𝐵
∑
𝑏=1

𝐻̂𝑚,𝑏(𝜏), 𝑚 ∈ 1, ..., 𝑀 (13.3)

where 𝐵 is the total number of bootstrapped estimators, 𝑀 is the number of terminal
nodes, and 𝐻̂𝑚,𝑏 is the cumulative hazard for the 𝑚th terminal node in the 𝑏th tree. The
bootstrapped Kaplan-Meier estimator is calculated analogously. More generally these can
be considered as a uniform mixture of 𝐵 distributions (Chapter 19).

All implemented RSFs can now be summarised into the following five algorithms:

RRT {#mod-rrt}\ LeBlanc and Crowley’s (1992) (LeBlanc and Crowley 1992) survival
decision tree uses a deviance splitting rule with a terminal node ranking prediction, which
assumes a PH model form. These ‘relative risk trees’ (RRTs) are implemented in the pack-
age rpart (Therneau and Atkinson 2019). This model is considered the least accessible
and transparent of all discussed in this section as: few implementations exist, it requires
assumptions that may not be realistic, and predictions are harder to interpret than other
models. Predictive performance of the model is expected to be worse than RSFs as this is
a decision tree; this is confirmed in (R. E. B. Sonabend 2021).

RRF {#mod-rrf}\ Ishwaran et al. (2004) (H. Ishwaran et al. 2004) proposed a random
forest framework for the relative risk trees, which makes a slight adaptation and applies the
iteration of the terminal node prediction after the tree is grown as opposed to during the
growing process. No implementation for these ‘relative risk forests’ (RRFs) could be found
or any usage in the literature.

RSDF-DEV {#mod-rsdfdev}\ Hothorn et al. (2004) (Hothorn et al. 2004) expanded upon
the RRT by introducing a bagging composition thus creating a random forest with a de-
viance splitting rule, again assuming a PH form. However the ranking prediction is altered
to be a bootstrapped Kaplan-Meier prediction in the terminal node. This is implemented
in ipred (Peters and Hothorn 2019). This model improves upon the accessibility and trans-
parency of the RRT by providing a more straightforward and interpretable terminal node
prediction. However, as this is a decision tree, predictive performance is again expected to
be worse than the RSFs.

RSCIFF {#mod-rsciff}\ Hothorn et al. (Hothorn et al. 2005) studied a conditional infer-
ence framework in order to predict log-survival time. In this case the splitting rule is based
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on an IPC weighted loss function, which allows implementation by off-shelf classical ran-
dom forests. The terminal node predictions are a weighted average of the log-survival times
in the node where weighting is determined by the Kaplan-Meier estimate of the censoring
distribution. This ‘random survival conditional inference framework forest’ (RSCIFF) is im-
plemented in party (Hothorn, Hornik, and Zeileis 2006) and partykit (Hothorn and Zeileis
2015), which additionally includes a distribution terminal node prediction via the boot-
strapped Kaplan-Meier estimator. The survival tree analogue (SDCIFT) is implemented in
the same packages. Implementation of the RSCIFF is complex, which is likely why all imple-
mentations (in the above packages) are by the same authors. The complexity of conditional
inference forests may also be the reason why several reviews, including this one, mention
(or completely omit) RSCIFFs but do not include any comprehensive details that explain
the fitting procedure (Bou-Hamad, Larocque, and Ben-Ameur 2011; H. Wang and Li 2017).
In this regard, it is hard to claim that RSCIFFs are transparent or accessible. Moreover the
authors of the model state that random conditional inference forests are for “expert user[s]
only and [their] current state is rather experimental” (Hothorn and Zeileis 2015). Finally
with respect to model performance, there is evidence that they can outperform RSDFs (be-
low) dependent on the data type (Nasejje et al. 2017) however no benchmark experiment
could be found that compared them to other models.

RSDF-STAT {#mod-rsdfstat}\ Finally Ishwaran et al. (2008) (B. H. Ishwaran et al. 2008)
proposed the most general form of RSFs with a choice of hypothesis tests (log-rank and log-
rank score) and survival measure (Brier, concordance) splitting rules, and a bootstrapped
Nelson-Aalen terminal node prediction. These are implemented in randomForestSRC
(H. Ishwaran and Kogalur 2018) and ranger (Wright and Ziegler 2017). There are sev-
eral implementations of these models across programming languages, and extensive details
for the fitting and predicting procedures, which makes them very accessible. The models
utilise a standard random forest framework, which makes them transparent and familiar
to those without expert Survival knowledge. Moreover they have been proven to perform
well in benchmark experiments, especially on high-dimensional data (Herrmann et al. 2021;
Spooner et al. 2020).

13.1.3 Conclusions
Random forests are a highly flexible algorithm that allow the various components to be
adapted and altered without major changes to the underlying algorithm. The result is that
relatively few R implementations of RSFs cover almost half a century’s worth of develop-
ments. The only algorithm that does not seem to be implemented is the relative risk forest.

A lack of accessibility, transparency, or proven performance makes RRT and RSDF-DEV
a poor choice for model fitting. RSCIFF is potentially a powerful method with promising
results in benchmark experiments, but even the authors recognise its complexity prevents
it from being accessible. Ishwaran’s RSFs on the other hand are more user-friendly and
suitable for model fitting and deployment. Simulation studies have demonstrated that RSFs
can perform well even with high levels of censoring and there is evidence that on some
datasets these can outperform a Cox PH (B. H. Ishwaran et al. 2008). Ishwaran’s model
is highly flexible, and its implementation in software packages reflects this. Therefore one
can still confidently conclude that random forests are a powerful algorithm in regression,
classification, and survival analysis.
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Support Vector Machines

TODO (150-200 WORDS)

Major changes expected!

This page is a work in progress and major changes will be made over time.

14.0.1 SVMs for Regression
In the simplest explanation, support vector machines (SVMs) (Cortes and Vapnik 1995) fit
a hyperplane, 𝑔, on given training data and make predictions for new values as ̂𝑔(𝑋∗) for
some testing covariate 𝑋∗. One may expect the hyperplane to be fit so that all training
covariates would map perfectly to the observed labels (a ‘hard-boundary’) however this
would result in overfitting and instead an acceptable (‘soft’-)boundary of error, the ‘𝜖-tube’,
dictates how ‘incorrect’ predictions may be, i.e. how large an underestimate or overestimate.
(Figure 14.1) visualises support vector machines for regression with a linear hyperplane
𝑔, and an acceptable boundary of error within the dashed lines (the 𝜖-tube). SVMs are
not limited to linear boundaries and kernel functions are utilised to specify more complex
hyperplanes. Exact details of the optimization/separating procedure are not discussed here
but many off-shelf ‘solvers’ exist in different programming languages for fitting SVMs.

In the regression setting, the goal of SVMs is to estimate the function

𝑔 ∶ ℝ𝑝 → ℝ; (𝑥) ↦ 𝑥𝛽 + 𝛽0 (14.1)

by estimation of the weights 𝛽 ∈ ℝ𝑝, 𝛽0 ∈ ℝ via the optimisation problem

min
𝛽,𝛽0,𝜉,𝜉∗

1
2‖𝛽‖2 + 𝐶

𝑛
∑
𝑖=1

(𝜉𝑖 + 𝜉∗
𝑖 )

subject to
⎧{
⎨{⎩

𝑌𝑖 − 𝑔(𝑋𝑖) ≤ 𝜖 + 𝜉𝑖
𝑔(𝑋𝑖) − 𝑌𝑖 ≤ 𝜖 + 𝜉∗

𝑖
𝜉𝑖, 𝜉∗

𝑖 ≥ 0, 𝑖 = 1, ..., 𝑛

(14.2)

where 𝐶 ∈ ℝ is the regularization/cost parameter, 𝜉𝑖, 𝜉∗
𝑖 are slack parameters and 𝜖 is a

margin of error for observations on the wrong side of the hyperplane, and 𝑔 is defined
in (Equation 14.1). The effect of the slack parameters is seen in (Figure 14.1) in which a
maximal distance from the 𝜖-tube is dictated by the slack variables.

In fitting, the dual of the optimisation is instead solved and substituting the optimised
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parameters into (Equation 14.1) gives the prediction function,

̂𝑔(𝑋∗) =
𝑛

∑
𝑖=1

(𝛼𝑖 − 𝛼∗
𝑖 )𝐾(𝑋∗, 𝑋𝑖) + 𝛽0

where 𝛼𝑖, 𝛼∗
𝑖 are Lagrangrian multipliers and 𝐾 is some kernel function.1 The Karush-Kuhn-

Tucker conditions required to solve the optimisation for 𝛼 result in the key property of SVMs,
which is that values 𝛼𝑖 = 𝛼∗

𝑖 = 0 indicate that observation 𝑖 is ‘inside’ the 𝜖-tube and if
𝛼𝑖 ≠ 0 or 𝛼∗

𝑖 ≠ 0 then 𝑖 is outside the tube and termed a support vector. It is these ‘support
vectors’ that influence the shape of the separating boundary.

The choice of kernel and its parameters, the regularization parameter 𝐶, and the acceptable
error 𝜖, are all tunable hyper-parameters, which makes the support vector machine a highly
adaptable and often well-performing machine learning method. However the parameters 𝐶
and 𝜖 often have no clear apriori meaning (especially true when predicting abstract rankings)
and thus require extensive tuning over a great range of values; no tuning will result in a
very poor model fit.

Figure 14.1: Visualising a support vector machine with an 𝜖-tube and slack parameters 𝜉
and 𝜉∗. Red circles are values within the 𝜖-tube and blue diamonds are values outside the
tube. x-axis is single covariate, 𝑥, and y-axis is 𝑔(𝑥) = 𝑥𝛽 + 𝛽0.

1Discussion about the purpose of kernels and sensible choices can be found in [@pkgsurvivalsvm;
@Hastie2013; @Vapnik1998].
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14.0.2 SVMs for Survival Analysis
Similarly to random forests, all research for Survival Support Vector Machines (SSVMs) can
be reduced to very few algorithms, in fact only one unique off-shelf algorithm is identified in
this survey. No SSVM for distribution predictions exist, instead they either predict survival
time, rankings, or a hybrid of the two.

Other reviews and surveys of SSVMs include a short review by Wang et al. (2017) (P. Wang,
Li, and Reddy 2019) and some benchmark experiments and short surveys from Van Belle
et al. (2011) (Vanya Van Belle, Pelckmans, Van Huffel, et al. 2011), Goli et al. (2016) (Goli,
Mahjub, Faradmal, and Soltanian 2016) and Fouodo et al. (2018) (Fouodo et al. 2018). All
the benchmark experiments in these papers indicate that the Cox PH performs as well as,
if not better than, the SSVMs.

Initial attempts at developing SSVMs by Shivaswamy et al. (2007) (Shivaswamy, Chu, and
Jansche 2007) took the most ‘natural’ course and attempt to treat the problem as a regres-
sion one with adjustments in the optimisation for censoring. These methods have a natural
interpretation and are intuitive in their construction. Further development of these by Khan
and Zubek (2008) (Khan and Bayer Zubek 2008) and Land et al. (2011) (Land et al. 2011)
focused on different adjustments for censoring in order to best reflect a realistic survival
data set-up. Simultaneously, ranking models were developed in order to directly optimise
a model’s discriminatory power. Developments started with the work of Evers and Messow
(2008) (Evers and Messow 2008) but were primarily made by Van Belle et al. (2007)-(2011)
(V. Van Belle et al. 2010; Vanya Van Belle et al. 2007, 2008; Vanya Van Belle, Pelckmans,
Suykens, et al. 2011). These lack the survival time interpretation but are less restrictive in
the optimisation constraints. Finally a hybrid of the two followed naturally from Van Belle
et al. (2011) (Vanya Van Belle, Pelckmans, Van Huffel, et al. 2011) by combining the con-
straints from both the regression and ranking tasks. This hybrid method allows a survival
time interpretation whilst still optimising discrimination. These hybrid models have become
increasingly popular in not only SSVMs, but also neural networks (Section 16.1). Instead
of presenting these models chronologically, the final hybrid model is defined and then other
developments can be more simply presented as components of this hybrid. One model with
an entirely different formulation is considered after the hybrid.

For all SSVMs defined in this section let: 𝜉𝑖, 𝜉∗
𝑖 , 𝜉′

𝑖 be slack variables; 𝛽, 𝛽0 be model weights
in ℝ; 𝐶, 𝜇 be regularisation hyper-parameters in ℝ; (𝑋𝑖, 𝑇𝑖, Δ𝑖)

𝑖.𝑖.𝑑.∼ (𝑋, 𝑇 , Δ) be the usual
training data; and 𝑔(𝑥) = 𝑥𝛽 + 𝛽0.

14.0.2.1 SSVM-Hybrid {.unnumbered .unlisted}

Van Belle et al. published several papers developing SSVMs, which culminate in the hybrid
model here termed ‘SSVM-Hybrid’ (Vanya Van Belle, Pelckmans, Van Huffel, et al. 2011).
The model is defined by the optimisation problem,

SSVM-Hybrid\

min
𝛽,𝛽0,𝜉,𝜉′,𝜉∗

1
2‖𝛽‖2 + 𝐶

𝑛
∑
𝑖=1

𝜉𝑖 + 𝜇
𝑛

∑
𝑖=1

(𝜉′
𝑖 + 𝜉∗

𝑖 )

subject to

⎧{{
⎨{{⎩

𝑔(𝑋𝑖) − 𝑔(𝑋𝑗(𝑖)) ≥ 𝑇𝑖 − 𝑇𝑗(𝑖) − 𝜉𝑖,
Δ𝑖(𝑔(𝑋𝑖) − 𝑇𝑖) ≤ 𝜉∗

𝑖
𝑇𝑖 − 𝑔(𝑋𝑖) ≤ 𝜉′

𝑖
𝜉𝑖, 𝜉′

𝑖 , 𝜉∗
𝑖 ≥ 0, ∀𝑖 = 1, ..., 𝑛
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where 𝑗(𝑖) ∶= argmax𝑗∈1,...𝑛{𝑇𝑗 ∶ 𝑇𝑗 < 𝑇𝑖} is an index discussed further below. A prediction
for test data is given by,

̂𝑔(𝑋∗) =
𝑛

∑
𝑖=1

𝛼𝑖(𝐾(𝑋𝑖, 𝑋∗) − 𝐾(𝑋𝑗(𝑖), 𝑋∗)) + 𝛼∗
𝑖𝐾(𝑋𝑖, 𝑋∗) − Δ𝑖𝛼′

𝑖𝐾(𝑋𝑖, 𝑋∗) + 𝛽0

where 𝛼𝑖, 𝛼∗
𝑖 , 𝛼′

𝑖 are Lagrange multipliers and 𝐾 is a chosen kernel function, which may have
hyper-parameters to select or tune.

SVCR (Regression)

Examining the components of the SSVM-Hybrid model will help identify its relation to
previously published SSVMs. First note the model’s connection to the regression setting
when on setting 𝐶 = 0, removing the associated first constraint and ignoring Δ in the
second constraint, the regression setting is exactly recovered:

min
𝛽,𝛽0,𝜉,𝜉′

1
2‖𝛽‖2 + 𝜇

𝑛
∑
𝑖=1

(𝜉𝑖 + 𝜉′
𝑖)

subject to
⎧{
⎨{⎩

𝑔(𝑋𝑖) − 𝑇𝑖 ≤ 𝜉𝑖
𝑇𝑖 − 𝑔(𝑋𝑖) ≤ 𝜉′

𝑖
𝜉𝑖, 𝜉′

𝑖 ≥ 0, ∀𝑖 = 1, ..., 𝑛

Note a slight difference in the formulation of this optimisation to the original regression
problem, here no error component 𝜖 is directly included, instead this is part of the optimi-
sation and considered as part of the slack parameters 𝜉𝑖, 𝜉′

𝑖 ; effectively this is the same as
setting 𝜖 = 0. This formulation removes the 𝜖-tube symmetry seen previously and therefore
distinguishes more clearly between overestimates and underestimates, with each being pe-
nalised differently. Removing the 𝜖 parameter can lead to model overfitting as all points
become support vectors, however careful tuning of other hyper-parameters can effectively
control for this.

This formulation allows for clearer control over left-, right-, and un-censored observations.
Clearly if an observation is uncensored then the true value is known and should be predicted
exactly, hence under- and over-estimates are equally problematic and should be penalised
the same. If an observation is right-censored then the true death time is greater than the ob-
served time and therefore overestimates should not be heavily penalised but underestimates
should be; conversely for left-censored observations.

This leads to the first SSVM for regression from Shivaswamy et al. (2007) (Shivaswamy,
Chu, and Jansche 2007).

SVCR
min

𝛽,𝛽0,𝜉,𝜉∗

1
2‖𝛽‖2 + 𝜇( ∑

𝑖∈𝑅
𝜉𝑖 + ∑

𝑖∈𝐿
𝜉∗

𝑖 )

subject to
⎧{
⎨{⎩

𝑔(𝑋𝑖) − 𝑇𝑖 ≤ 𝜉∗
𝑖 , ∀𝑖 ∈ 𝑅

𝑇𝑖 − 𝑔(𝑋𝑖) ≤ 𝜉𝑖, ∀𝑖 ∈ 𝐿
𝜉𝑖 ≥ 0, ∀𝑖 ∈ 𝑅; 𝜉∗

𝑖 ≥ 0, ∀𝑖 ∈ 𝐿

where 𝐿 is the set of observations who are either left- or un-censored, and 𝑅 is the set
of observations who are either right- or un-censored. Hence an uncensored observation is
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constrained on both sides as their true survival time is known, whereas a left-censored ob-
servation is constrained in the amount of ‘over-prediction’ and a right-censored observation
is constrained by ‘under-prediction’. This is intuitive as the only known for these censoring
types are the lower and upper bounds of the actual survival time respectively.

Reducing this to the book scope of right-censoring only results in the optimisation:

min
𝛽,𝛽0,𝜉,𝜉∗

1
2‖𝛽‖2 + 𝜇(

𝑛
∑
𝑖=1

𝜉𝑖 + 𝜉∗
𝑖 )

subject to

⎧{{
⎨{{⎩

Δ𝑖(𝑔(𝑋𝑖) − 𝑇𝑖) ≤ 𝜉𝑖
𝑇𝑖 − 𝑔(𝑋𝑖) ≤ 𝜉∗

𝑖
𝜉𝑖, 𝜉∗

𝑖 ≥ 0
∀𝑖 ∈ 1, ..., 𝑛

which can be seen to be identical to SSVM-Hybrid when 𝐶 = 0 and the first constraint is
removed. Predictions are found by,

̂𝑔(𝑋∗) =
𝑛

∑
𝑖=1

𝛼∗
𝑖𝐾(𝑋𝑖, 𝑋∗) − Δ𝑖𝛼′

𝑖𝐾(𝑋𝑖, 𝑋∗) + 𝛽0

The advantage of this algorithm is its simplicity. Clearly if no-one is censored then the
optimisation is identical to the regression optimisation in (Equation 14.2). As there is no 𝜖
hyper-parameter, the run-time complexity is the same as, if not quicker than, a regression
SVM. Both left- and right-censoring are handled and no assumptions are made about in-
dependent censoring. With respect to performance, benchmark experiments (Fouodo et al.
2018) indicate that the SVCR does not outperform a na”ive SVR (i.e. censoring ignored).
The SVCR is implemented in the R package survivalsvm (Fouodo et al. 2018) and is
referred to as ‘regression’.

As discussed, the error margin for left- and right- censoring should not necessarily be equal
and the penalty for each should not necessarily be equal either. Hence a natural extension to
SVCR is to add further parameters to better separate the different censoring types, which
gives rise to the SVRc (Khan and Bayer Zubek 2008). However this model is only briefly
discussed as left-censoring is out of scope of this book and also the model is patented and
therefore not easily accessible. The model is given by the optimisation,

SVRc
min

𝛽,𝛽0,𝜉,𝜉∗

1
2‖𝛽‖2 +

𝑛
∑
𝑖=1

𝐶𝑖𝜉𝑖 + 𝐶∗
𝑖 𝜉′

𝑖

subject to
⎧{
⎨{⎩

𝑔(𝑋𝑖) − 𝑇𝑖 ≤ 𝜖′
𝑖 + 𝜉′

𝑖
𝑇𝑖 − 𝑔(𝑋𝑖) ≤ 𝜖𝑖 + 𝜉𝑖
𝜉𝑖, 𝜉′

𝑖 ≥ 0, ∀𝑖 = 1, ..., 𝑛

Where 𝐶𝑖 = Δ𝑖𝐶𝑐 + (1 − Δ𝑖)𝐶𝑛, 𝜖𝑖 = Δ𝑖𝜖𝑐 + (1 − Δ𝑖)𝜖𝑛 and analogously for 𝐶∗
𝑖 , 𝐶∗

𝐶 , 𝜖∗, ....
The new hyper-parameters 𝐶𝑐, 𝐶𝑛, 𝜖𝑐, 𝜖𝑛 are the penalty for errors in censored predictions (c)
and uncensored predictions (n) for left and right (*) censoring, and the acceptable margin
of errors respectively. The rationale behind this algorithm is clear, by having asymmetric
error margins the algorithm can penalise predictions that are clearly wrong whilst allowing
predictions that may be correct (but ultimately unknown due to censoring). Experiments
indicate the model may have superior discrimination than the Cox PH (Khan and Bayer
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Zubek 2008) and SVCR (Du and Dua 2011). However these conclusions are weak as inde-
pendent experiments do not have access to the patented model.

The largest drawback of the algorithm is a need to tune eight parameters. As the number
of hyper-parameters to tune increases, so too does model fitting time as well as the risk
of overfitting. The problem of extra hyper-parameters is the most common disadvantage of
the model given in the literature (Fouodo et al. 2018; Land et al. 2011). Land et al. (2011)
(Land et al. 2011) present an adaptation to the SVRc to improve model fitting time, termed
the EP-SVRc, which uses Evolutionary Programming to determine the optimal values for
the parameters. No specific model or algorithm is described, nor any quantitative results
presented. No evidence can be found for this method being used since publication. The
number of hyper-parameters in the SVRc, coupled with its lack of accessibility, outweigh
the benefits of the claimed predictive performance and is therefore clearly not accessible.

14.0.2.2 SSVM-Rank {.unnumbered .unlisted}

The regression components of SSVM-Hybrid (14.0.2.1) have been fully examined, now turn-
ing to the ranking components and setting 𝜇 = 0. In this case the model reduces to

SSVM-Rank
min

𝛽,𝛽0,𝜉
1
2‖𝛽‖2 + 𝐶

𝑛
∑
𝑖=1

𝜉𝑖

subject to{
𝑔(𝑋𝑖) − 𝑔(𝑋𝑗(𝑖)) ≥ 𝑇𝑖 − 𝑇𝑗(𝑖) − 𝜉𝑖,
𝜉𝑖 ≥ 0, ∀𝑖 = 1, ..., 𝑛

with predictions

̂𝑔(𝑋∗) =
𝑛

∑
𝑖=1

𝛼𝑖(𝐾(𝑋𝑖, 𝑋∗) − 𝐾(𝑋𝑗(𝑖), 𝑋∗))

This formulation, termed here ‘SSVM-Rank’, has been considered by numerous authors in
different forms, including Evers and Messow (Evers and Messow 2008) and Van Belle et al.
(Vanya Van Belle et al. 2007, 2008; Vanya Van Belle, Pelckmans, Van Huffel, et al. 2011).
The primary differences between the various models are in which observations are compared
in order to optimise discrimination; to motivate why this matters, first observe the intuitive
nature of the optimisation constraints. By example, define 𝑘 ∶= 𝑇𝑖 − 𝑇𝑗(𝑖) and say 𝑇𝑖 > 𝑇𝑗(𝑖).
Then, in the first constraint, 𝑔(𝑋𝑖) − 𝑔(𝑋𝑗(𝑖)) ≥ 𝑘 − 𝜉𝑖. As 𝑘 > 0 and 𝜉𝑖 ≥ 0, it follows
that 𝑔(𝑋𝑖) > 𝑔(𝑋𝑗(𝑖)), hence creating a concordant ranking2 which is the opposite to the
between observations 𝑖 (ranked higher) and 𝑗(𝑖); illustrating why this optimisation results
in a ranking model.

This choice of comparing observations 𝑖 and 𝑗(𝑖) (defined below) stems from a few years of
research in an attempt to optimise the algorithm with respect to both speed and predictive
performance. In the original formulation, RANKSVMC (Vanya Van Belle et al. 2007), the
model ranks all possible pairs of observations. This is clearly infeasible as it increases the
problem to a 𝒪(𝑞𝑛2/2) runtime where 𝑞 is the proportion of non-censored observations out
of a total sample size 𝑛 (Vanya Van Belle et al. 2008). The problem was reduced by taking a
nearest neighbours approach and only considering the 𝑘th closest observations (Vanya Van
Belle et al. 2008). Simulation experiments determined that the single nearest neighbour

2Note this ranking has the interpretation ’higher rank equals lower risk’.
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was sufficient, thus arriving at 𝑗(𝑖), the observation with the largest observed survival time
smaller than 𝑇𝑖,

𝑗(𝑖) ∶= argmax
𝑗∈1,...𝑛

{𝑇𝑗 ∶ 𝑇𝑗 < 𝑇𝑖}

This requires that the first observation is taken to be an event, even if it is actually censored.
In practice, sorting observations by survival time then greatly speeds up the model run-time
(Fouodo et al. 2018). The RANKSVMC and SSVM-RANK are implemented in survivalsvm
(Fouodo et al. 2018) and referred to as ‘vanbelle1’ and ‘vanbelle2’ respectively.

The hybrid model is repeated below with the ranking components in blue, the regression
components in red, and the common components in black, clearly highlighting the composite
nature of the model.

min
𝛽,𝛽0,𝜉,𝜉′,𝜉∗

1
2‖𝛽‖2 + 𝐶

𝑛
∑
𝑖=1

𝜉𝑖 + 𝜇
𝑛

∑
𝑖=1

(𝜉′
𝑖 + 𝜉∗

𝑖 )

subject to

⎧{{
⎨{{⎩

𝑔(𝑋𝑖) − 𝑔(𝑋𝑗(𝑖)) ≥ 𝑇𝑖 − 𝑇𝑗(𝑖) − 𝜉𝑖

Δ𝑖(𝑔(𝑋𝑖) − 𝑇𝑖) ≤ 𝜉∗
𝑖

𝑇𝑖 − 𝑔(𝑋𝑖) ≤ 𝜉′
𝑖

𝜉𝑖, 𝜉′
𝑖 , 𝜉∗

𝑖 ≥ 0, ∀𝑖 = 1, ..., 𝑛

and predictions are made with,

̂𝑔(𝑋∗) =
𝑛

∑
𝑖=1

𝛼𝑖(𝐾(𝑋𝑖, 𝑋∗) − 𝐾(𝑋𝑗(𝑖), 𝑋∗)) + 𝛼∗
𝑖𝐾(𝑋𝑖, 𝑋∗) − Δ𝑖𝛼′

𝑖𝐾(𝑋𝑖, 𝑋∗) + 𝛽0

The regularizer hyper-parameters 𝐶 and 𝜇 now have a clear interpretation. 𝐶 is the penalty
associated with the regression method and 𝜇 is the penalty associated with the ranking
method. By always fitting the hybrid models and tuning these two parameters, there is
never a requirement to separately fit the regression or ranking methods as these would be
automatically identified as superior in the tuning procedure. Moreover, the hybrid model
retains the interpretability of the regression method and predictions can be interpreted as
survival times. The hybrid method is implemented in survivalsvm as ‘hybrid’. By Van
Belle’s own simulation studies, these models do not outperform the Cox PH with respect
to Harrell’s C.

SSVR-MRL

Not all SSVMs can be considered a variant of the SSVM-Hybrid, though all prominent and
commonly utilised suggestions do seem to have this formulation. One other algorithm of
note is termed here the ‘SSVM-MRL’ (Goli, Mahjub, Faradmal, and Soltanian 2016; Goli,
Mahjub, Faradmal, Mashayekhi, et al. 2016), which is a regression SSVM. The algorithm
is identical to SVCR with one additional constraint.
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SSVR-MRL\

min
𝛽,𝛽0,𝜉,𝜉∗,𝜉′

1
2‖𝛽‖2 + 𝐶

𝑛
∑
𝑖=1

(𝜉𝑖 + 𝜉∗
𝑖 ) + 𝐶∗

𝑛
∑
𝑖=1

𝜉′
𝑖

subject to

⎧{{{
⎨{{{⎩

𝑇𝑖 − 𝑔(𝑋𝑖) ≤ 𝜉𝑖
Δ𝑖(𝑔(𝑋𝑖) − 𝑇𝑖) ≤ 𝜉∗

𝑖

(1 − Δ𝑖)(𝑔(𝑋𝑖) − 𝑇𝑖 − 𝑀𝑅𝐿(𝑇𝑖| ̂𝑆)) ≤ 𝜉′
𝑖

𝜉𝑖, 𝜉∗
𝑖 , 𝜉′

𝑖 ≥ 0
∀𝑖 = 1, ..., 𝑛

where 𝑀𝑅𝐿(𝑇𝑖| ̂𝑆) is the ‘mean residual lifetime’ function (Klein and Moeschberger 2003)

𝑀𝑅𝐿(𝜏| ̂𝑆) =
∫∞
𝜏

̂𝑆(𝑢)𝑑𝑢
̂𝑆(𝜏)

which is the area under the estimated survival curve (say by Kaplan Meier), ̂𝑆, from point
𝜏 , weighted by the probability of being alive at point 𝜏 . This is interpreted as the expected
remaining lifetime from point 𝜏 . On setting 𝐶∗ = 0 and removing associated constraint
three, this reduces exactly to the SVCR and similarly if there’s no censoring then the
standard regression setting is recovered. Unlike other strategies, no new hyper-parameters
are introduced and Kaplan-Meier estimation should not noticeably impact run-time. There
is no evidence of this model being used in practice, nor of any off-shelf implementation.
Theoretically, the hybrid model could be expanded to include this extra penalty term and
constraint (discussed below).

14.0.3 Conclusions
Several SSVMs have been proposed for survival analysis. These can generally be categorised
into ‘regression’ models that adapt SVMs to account for censoring and predict a survival
time, ‘ranking’ models that predict a relative ranking in order to optimise measures of
discrimination, and ‘hybrid’ models that optimise measures of discrimination but make sur-
vival time predictions. Other SSVMs that lie outside of these groupings are not able to solve
the survival task (e.g. (Shiao and Cherkassky 2013)). Other SVM-type approaches could be
considered, including relevance vector machines and import vector machines, however less
work has been developed in these areas and further consideration is beyond the scope of
this book.

The models that have received the most attention are SVCR, SSVM-Rank, and SSVM-
Hybrid; the first two are special cases of SSVM-Hybrid. Judging if SSVM-Hybrid (and by
extension SVCR and SSVM-Rank) is accessible and transparent is not straightforward. On
the one hand it could be considered transparent as SVMs have been studied for decades
and the literature for SSVMs, especially from Van Belle, is extensive. On the other hand,
the predictions from SSVM-Hybrid should be interpretable as survival times but first hand
experience indicates that this is not the case (though this may be due to implementation),
which calls into question whether the interpretation they claim to have is actually correct.
For accessibility, there appears to be only one implementation of SSVMs in R (Fouodo et
al. 2018), and also only one in Python (Pölsterl 2020), which may be due to SSVMs being
difficult to implement, even when several optimisation solvers exist off-shelf. Finally, there is
no evidence that SSVMs outperform the Cox PH or baseline models and moreover they often
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perform worse (Fouodo et al. 2018; Vanya Van Belle, Pelckmans, Van Huffel, et al. 2011),
which is also seen in (R. E. B. Sonabend 2021). Yet one cannot dismiss SSVMs outright as
they often require extensive tuning to perform well, even in classification settings, and no
benchmark experiment has yet to emerge for testing SSVMs with the required set-up.3

3Though one is in progress as a result of the work in [@Sonabend2021b].
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Boosting Methods

TODO (150-200 WORDS)

Major changes expected!

This page is a work in progress and major changes will be made over time.

15.1 Gradient Boosting Machines
15.1.1 Gradient Boosting Machines for Regression
Boosting is a machine learning strategy that can be applied to any model class. Similarly to
random forests, boosting is an ‘ensemble’ method that creates a model from a ‘committee’
of learners. The committee is formed of ‘weak’ learners that make poor predictions individ-
ually, which creates a ‘slow learning’ approach (as opposed to ‘greedy’) that requires many
iterations for a model to be a good fit to the data. Boosting models are similar to random
forests in that both make predictions from a large committee of learners. However the two
differ in how this committee is combined to a prediction. In random forest algorithms, each
decision tree is grown independently and their predictions are combined by a simple mean
calculation. In contrast, weak learners in a boosting model are fit sequentially and predic-
tions are made by a linear combination of predictions from each learner. With respect to
transparency, it is simpler to inspect 100 trees in a random forest, than it is to inspect 100
weak learners in a boosted model, though both are considered black-box models.

The best known boosting algorithm is likely AdaBoost (Freund and Schapire 1996), which
is more generally a Forward Stagewise Additive Model (FSAM) with an exponential loss
(Hastie, Tibshirani, and Friedman 2001). Today, the most widely used boosting model is
the Gradient Boosting Machine (GBM) (J. H. Friedman 2001).

Training a GBM

Pseudo-code for training a componentwise GBM is presented in (7). The term ‘componen-
twise’ is explained fully below, only this variation of GBM is presented as it is the most
common in implementation (Greenwell et al. 2019; Hothorn et al. 2020). Line 1: the initial
function is initialized as 𝑔0 = 0;1 Line 2: iterate over boosting steps 𝑚 = 1, ..., 𝑀 and; Line 3:

1Some algorithms may instead initialize 𝑔0 by finding the value that minimises the given loss function,
however setting 𝑔0 = 0 appears to be the most common practice for componentwise GBMs.
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randomly sample the training data, 𝒟𝑡𝑟𝑎𝑖𝑛, to a smaller sample, 𝒟∗
𝑡𝑟𝑎𝑖𝑛, this may be ignored

if 𝜙 = 1; Line 4: for all training observations in the reduced dataset, 𝑖 ∈ {𝑖 ∶ 𝑋𝑖 ∈ 𝒟∗
𝑡𝑟𝑎𝑖𝑛},

compute the negative gradient, 𝑟𝑖𝑚, of the differentiable loss function, 𝐿, with respect to
predictions from the previous iteration, 𝑔𝑚−1(𝑋𝑖); Line 5: fit one weak learner for each
feature, 𝑗 = 1, ..., 𝑝, in the training data, where the feature, 𝑋;𝑗, is the single covariate and
𝑟𝑖𝑚 are the labels; Line 6: select the optimal weak learner as the one that minimises the
squared error between the prediction and the true gradient; Line 7: update the fitted model
by adding the optimal weak learner with a shrinkage penalty, 𝜈; Line 9: return the model
updated in the final iteration as the fitted GBM.

Algorithm 4 Training a componentwise Gradient Boosting Machine.
**Input** Training data, 𝒟𝑡𝑟𝑎𝑖𝑛 = {(𝑋1, 𝑌1), ..., (𝑋𝑛, 𝑌𝑛)}, where (𝑋𝑖, 𝑌𝑖)

𝑖.𝑖.𝑑.∼ (𝑋, 𝑌 ). Dif-
ferentiable loss, 𝐿. Hyper-parameters: sampling fraction, 𝜙 ∈ (0, 1]; step-size, 𝜈 ∈ (0, 1];
number of iterations, 𝑀 ∈ ℝ>0.
**Output** Boosted model, ̂𝑔.

1: Initialize 𝑔0 ← 0
2: for 𝑚 = 1, ..., 𝑀 do
3: 𝒟∗

𝑡𝑟𝑎𝑖𝑛 ← Randomly sample 𝒟𝑡𝑟𝑎𝑖𝑛 w.p. 𝜙
4: 𝑟𝑖𝑚 ← −[ 𝜕𝐿(𝑦𝑖,𝑔𝑚−1(𝑋𝑖))

𝜕𝑔𝑚−1(𝑋𝑖) ], 𝑖 ∈ {𝑖 ∶ 𝑋𝑖 ∈ 𝒟∗
𝑡𝑟𝑎𝑖𝑛}

5: Fit 𝑝 weak learners, 𝑤𝑗 to (𝑋𝑖, 𝑟𝑖𝑚), 𝑗 = 1, .., 𝑝
6: 𝑗∗ ← argmin𝑗=1,..,𝑝 ∑𝑖∈{𝑖∶𝑋𝑖∈𝒟∗

𝑡𝑟𝑎𝑖𝑛}(𝑟𝑖𝑚 − 𝑤𝑗(𝑋𝑖))2

7: 𝑔𝑚 ← 𝑔𝑚−1 + 𝜈𝑤𝑗∗

8: end for
9: ̂𝑔 ← 𝑔𝑀 return ̂𝑔

Predicting with a GBM

In general, predictions from a trained GBM are simple to compute as the fitted model (and
all individual weak learners) take the same inputs, which are passed sequentially to each of
the weak learners. In (7), the fitted GBM is a single model, which is a linear combination of
weak learners. Instead one could think of the returned model as a collection of the optimal
weak learners, i.e. let 𝑤𝑚;𝑗∗ be the optimal weak learner from iteration 𝑚 and let the fitted
GBM (Line 9 (7)) be ̂𝑔 ∶= {𝑤𝑚;𝑗∗}𝑀

𝑚=1.2 With this formulation, making predictions from
the GBM can be demonstrated simply in ((alg-surv-gbm-pred?)).

Algorithm 5 Predicting from a Gradient Boosting Machine.
**Input** Fitted GBM, ̂𝑔 ∶= {𝑤𝑚;𝑗∗}𝑀

𝑚=1, trained with step-size 𝜈. Testing data 𝑋∗ ∼ 𝒳.
**Output** Prediction, ̂𝑌 ∼ 𝒴.

1: Initialize ̂𝑌 = 0
2: for 𝑚 = 1, ..., 𝑀 do
3: ̂𝑌 ← ̂𝑌 + 𝜈𝑤𝑚;𝑗∗(𝑋∗)
4: end forreturn ̂𝑌

The biggest advantages of boosting are firstly relatively few hyper-parameters, which all
2This formulation is computationally and mathematically identical to the formulation in (@alg-surv-

gbm) and is practically more convenient for implementation, indeed this is the implementation in mboost
[@pkgmboost]. Despite this, the formulation in (@alg-surv-gbm) is common in the literature, which often
conflates model training and predicting.
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have a meaningful and intuitive interpretation, and secondly its modular nature means
that, like random forests, relatively few parts need to be updated to derive a novel model.
First the model components will be discussed and then the hyper-parameters. Once this
has been established, deriving survival variants can be simply presented.

15.1.1.1 Losses and Learners

Losses

Building a GBM requires selection of the loss to minimise, 𝐿, selection of weak learners, 𝑤𝑗,
and a method to compare the weak learners to the loss gradient. The only constraint in
selecting a loss, 𝐿, is that it must be differentiable with respect to 𝑔(𝑋) (Hastie, Tibshirani,
and Friedman 2001). Of course a sensible loss should be chosen (a classification loss should
not be used for regression) and different choices of losses will optimise different tasks. 𝐿2-
losses have been demonstrated to be effective for regression boosting, especially with high-
dimensional data (Bühlmann and Yu 2003); this is referred to as 𝐿2-boosting.

Weak Learners

(4) is specifically a componentwise GBM (Bühlmann and Yu 2003), which means that
each of the 𝑝 weak learners is fit on a single covariate from the data. This method
simplifies selecting the possible choices for the weak learners to selecting the class
of weak learner (below). Additionally, componentwise GBMs provide a natural
and interpretable feature selection method as selecting the optimal learner ((7),
line 6) corresponds to selecting the feature that minimises the chosen loss in
iteration 𝑚.

Only three weak, or ‘base’, learner classes are commonly used in componentwise GBMs
(Hothorn et al. 2020; Z. Wang and Wang 2010). These are linear least squares (J. H. Fried-
man 2001), smoothing splines (Bühlmann and Yu 2003), and decision stumps (Bühlmann
and Yu 2003; J. H. Friedman 2001). Let 𝐿 be a loss with negative gradient for observation 𝑖
in the 𝑚th iteration, 𝑟𝑖𝑚, and let 𝒟𝑡𝑟𝑎𝑖𝑛 be the usual training data. For linear least squares,
an individual weak learner is fit by (J. H. Friedman 2001; Z. Wang and Wang 2010),

𝑤𝑗(𝒟𝑡𝑟𝑎𝑖𝑛) = 𝑋;𝑗
∑𝑛

𝑖=1 𝑋𝑖𝑗𝑟𝑖𝑚
∑𝑛

𝑖=1(𝑋𝑖𝑗)2

For smoothing splines, usually cubic splines are implemented, these fit weak learners as the
minimisers of the equation (Bühlmann and Yu 2003),

𝑤𝑗 ∶= argmin
𝑔∈𝒢

1
𝑛

𝑛
∑
𝑖=1

(𝑟𝑖𝑚 − 𝑔(𝑋𝑖𝑗))2 + 𝜆 ∫(𝑔″(𝑢))2𝑑𝑢

where 𝑔″ is the second derivative of 𝑔, 𝒢 is the set of functions, \ 𝒢 ∶= {𝑔 ∶
𝑔 is twice continuously differentiable and ∫(𝑔″(𝑥))2𝑑𝑥 < ∞}, and 𝜆 is a hyper-parameter
usually chosen so that the number of degrees of freedom, df, is small, with df ≈ 4 suggested
(Bühlmann and Yu 2003; Schmid and Hothorn 2008a; Z. Wang and Wang 2010).

Finally for decision stumps ((?@fig-surv-stump)), a decision tree, 𝑤𝑗, is grown ((alg-
dt-fit?)) on (𝑋;𝑗, 𝑟𝑚) to depth one (equivalently to two terminal nodes) for each of the
𝑗 = 1, ..., 𝑝 covariates (J. H. Friedman 2001).
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15.1.1.2 Hyper-Parameters

The hyper-parameters in (7) are the ‘step-size’, 𝜈, the sampling fraction, 𝜙, and the number
of iterations, 𝑀 .

Number of iterations, 𝑀
The number of iterations is often claimed to be the most important hyper-parameter in
GBMs and it has been demonstrated that as the number of iterations increases, so too does
the model performance (with respect to a given loss on test data) up to a certain point of
overfitting (Buhlmann 2006; Hastie, Tibshirani, and Friedman 2001; Schmid and Hothorn
2008a). This is an intuitive result as the foundation of boosting rests on the idea that weak
learners can slowly be combined to form a single powerful model. This is especially true in
componentwise GBMs as time is required to learn which features are important. Finding
the optimal value of 𝑀 is critical as a value too small will result in poor predictions, whilst
a value too large will result in model overfitting. Two primary methods have been suggested
for finding the optimal value of 𝑀 . The first is to find the 𝑀 ∈ ℕ>0 that minimises a given
measure based on the AIC (Akaike 1974), the second is the ‘usual’ empirical selection by
nested cross-validation. In practice the latter method is usually employed.

Step-size, 𝜈
The step-size parameter ((7), line 7), 𝜈, is a shrinkage parameter that controls the con-
tribution of each weak learner at each iteration. Several studies have demonstrated that
GBMs perform better when shrinkage is applied and a value of 𝜈 = 0.1 is often suggested
(Buhlmann and Hothorn 2007; Hastie, Tibshirani, and Friedman 2001; J. H. Friedman 2001;
D. K. K. Lee, Chen, and Ishwaran 2019; Schmid and Hothorn 2008a). The optimal values
of 𝜈 and 𝑀 depend on each other, such that smaller values of 𝜈 require larger values of
𝑀 , and vice versa. This is intuitive as smaller 𝜈 results in a slower learning algorithm and
therefore more iterations are required to fit the model. Accurately selecting the 𝑀 param-
eter is generally considered to be of more importance, and therefore a value of 𝜈 is often
chosen heuristically (e.g. the common value of 0.1) and then 𝑀 is tuned by cross-validation
and/or early-stopping.

Sampling Fraction, 𝜙
Motivated by the success of bagging in random forests, stochastic gradient boosting (J.
Friedman 1999) randomly samples the data in each iteration. It appears that subsampling
performs best when also combined with shrinkage (Hastie, Tibshirani, and Friedman 2001)
and as with the other hyper-parameters, selection of 𝜙 is usually performed by nested cross-
validation.

15.1.2 Gradient Boosting Machines for Survival Analysis
In a componentwise GBM framework, adapting boosting to survival analysis requires only
selecting a sensible choice of loss function 𝐿. Therefore fitting and predicting algorithms for
componentwise survival GBMs are not discussed as these are fully described in algorithms
(7) and ((alg-surv-gbm-pred?)) respectively. However, some GBMs in this section are not
componentwise and therefore require some more detailed consideration. Interestingly, unlike
other machine learning algorithms that historically ignored survival analysis, early GBM
papers considered boosting in a survival context (Ridgeway 1999); though there appears
to be a decade gap before further considerations were made in the survival setting. After
that period, several developments by Binder, Schmid, and Hothorn, adapted component-
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wise GBMs to a framework suitable for survival analysis. Their developments are covered
exhaustively in the R packages gbm (Greenwell et al. 2019) and mboost (Hothorn et al.
2020). This survey continues with the predict type taxonomy.

15.1.2.1 Cox Survival Models

All survival GBMs make ranking predictions and none are able to directly predict survival
distributions. However, the GBMs discussed in this section all have natural compositions to
distributions as they are modelled in the semi-parametric proportional hazards framework
(Chapter 19). The models discussed in the next section can also be composed to distributions
though the choice of composition is less clear and therefore they are listed as pure ‘ranking’
models.

GBM-COX {#mod-gdcox} {#mod-gbmcox}\ The ‘GBM-COX’ aims to predict the distri-
bution of data following the PH assumption by estimating the coefficients of a Cox model in
a boosting framework (Ridgeway 1999). The model attempts to predict ̂𝑔(𝑋∗) = ̂𝜂 ∶= 𝑋∗ ̂𝛽,
by minimising a suitable loss function. As the model assumes a PH specification, the natural
loss to optimise is the Cox partial likelihood (Cox 1972, 1975), more specifically to minimise
the negative partial log-likelihood, −𝑙, where

𝑙(𝛽) =
𝑛

∑
𝑖=1

Δ𝑖[𝜂𝑖 − log(
𝑛

∑
𝑗∈ℛ𝑡𝑖

exp(𝜂𝑖))] (15.1)

where ℛ𝑡𝑖
is the set of patients at risk at time 𝑡𝑖 and 𝜂𝑖 = 𝑋𝑖𝛽. The gradient of −𝑙(𝛽) at

iteration 𝑚 is
𝑟𝑖𝑚 ∶= Δ𝑖 −

𝑛
∑
𝑗=1

Δ𝑗
𝕀(𝑇𝑖 ≥ 𝑇𝑗) exp(𝑔𝑚−1(𝑋𝑖))
∑𝑘∈ℛ𝑡𝑗

exp(𝑔𝑚−1(𝑋𝑘)) (15.2)

where 𝑔𝑚−1(𝑋𝑖) = 𝑋𝑖𝛽𝑚−1.

(5) now follows with the loss 𝐿 ∶= −𝑙(𝛽).3

The GBM-COX is implemented in mboost (Hothorn et al. 2020) and has been demon-
strated to perform well even when the data violates the PH assumption (Johnson and Long
2011). Despite being a black-box, GBMs are well-understood and individual weak learners
are highly interpretable, thus making GBMs highly transparent. Several well-established
software packages implement GBM-COX and those that do not tend to be very flexible
with respect to custom implementations.

**CoxBoost** {#mod-coxboost}\ The CoxBoost algorithm boosts the Cox PH by optimis-
ing the penalized partial-log likelihood; additionally the algorithm allows for mandatory
(or ‘forced’) covariates (Harald Binder and Schumacher 2008). In medical domains the in-
clusion of mandatory covariates may be essential, either for model interpretability, or due
to prior expert knowledge. This is not a feature usually supported by boosting. CoxBoost
deviates from (7) by instead using an offset-based approach for generalized linear models
(Tutz and Binder 2007). This model has a non-componentwise and componentwise frame-
work but only the latter is implemented by the authors (Harold Binder 2013) and discussed

3Early implementations and publications of the GBM algorithm [@Friedman1999; @Friedman2001] in-
cluded an additional step to the algorithm in which a step size is estimated by line search. More recent
research has determined that this additional step is unneccesary [@Buhlmann2007] and the line search
method does not appear to be used in practice.
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here. Let ℐ𝑚𝑎𝑛𝑑 be the indices of the mandatory covariates to be included in all iterations,
𝑚 = 1, ..., 𝑀 , then for an iteration 𝑚 the indices to consider for fitting are the set

𝐼𝑚 = {{1} ∪ ℐ𝑚𝑎𝑛𝑑, ..., {𝑝} ∪ ℐ𝑚𝑎𝑛𝑑}/{{𝑗} ∪ ℐ𝑚𝑎𝑛𝑑 ∶ 𝑗 ∈ ℐ𝑚𝑎𝑛𝑑}

i.e. in each iteration the algorithm fits a weak learner on the mandatory covariates and one
additional (non-mandatory) covariate (hence still being componentwise).

In addition, a penalty matrix P ∈ ℝ𝑝×𝑝 is considered such that 𝑃𝑖𝑖 > 0 implies that
covariate 𝑖 is penalized and 𝑃𝑖𝑖 = 0 means no penalization. In practice this is usually a
diagonal matrix (Harald Binder and Schumacher 2008) and by setting 𝑃𝑖𝑖 = 0, 𝑖 ∈ 𝐼𝑚𝑎𝑛𝑑
and 𝑃𝑖𝑖 > 0, 𝑖 ∉ 𝐼𝑚𝑎𝑛𝑑, only optional (non-mandatory) covariates are penalized. The penalty
matrix can be allowed to vary with each iteration, which allows for a highly flexible approach,
however in implementation a simpler approach is to either select a single penalty to be
applied in each iteration step or to have a single penalty matrix (Harold Binder 2013).

At the 𝑚th iteration and the 𝑘th set of indices to consider (𝑘 = 1, ..., 𝑝), the loss to optimize
is the penalized partial-log likelihood given by

𝑙𝑝𝑒𝑛(𝛾𝑚𝑘) =
𝑛

∑
𝑖=1

Δ𝑖[𝜂𝑖,𝑚−1 + 𝑋𝑖,ℐ𝑚𝑘
𝛾𝑇

𝑚𝑘]−

Δ𝑖 log(
𝑛

∑
𝑗=1

𝕀(𝑇𝑗 ≤ 𝑇𝑖) exp(𝜂𝑖,𝑚−1 + 𝑋𝑖,ℐ𝑚𝑘
𝛾𝑇

𝑚𝑘) − 𝜆𝛾𝑚𝑘P𝑚𝑘𝛾𝑇
𝑚𝑘

where 𝜂𝑖,𝑚 = 𝑋𝑖𝛽𝑚, 𝛾𝑚𝑘 are the coefficients corresponding to the covariates in ℐ𝑚𝑘 which
is the possible set of candidates for a subset of total candidates 𝑘 = 1, ..., 𝑝, P𝑚𝑘 is the
penalty matrix, and 𝜆 is a penalty hyper-parameter to be tuned or selected.4

In each iteration, all potential candidate sets (the union of mandatory covariates and one
other covariate) are updated by

̂𝛾𝑚𝑘 = I−1
𝑝𝑒𝑛(0)𝑈(0)

where 𝑈(𝛾) = 𝜕𝑙/𝜕𝛾(𝛾) and I−1
𝑝𝑒𝑛 = 𝜕2𝑙/𝜕𝛾𝜕𝛾𝑇 (𝛾 + 𝜆P𝑚𝑘) are the first and second deriva-

tives of the unpenalized partial-log-likelihood. The optimal set is then found as

𝑘∗ ∶= argmax
𝑘

𝑙𝑝𝑒𝑛(𝛾𝑚𝑘)

and the estimated coefficients are updated with

̂𝛽𝑚 = ̂𝛽𝑚−1 + 𝛾𝑚𝑘∗ , 𝑘∗ ∈ ℐ𝑚𝑘

The step size, 𝜈, is then one, but this could potentially be altered.

The algorithm deviates from (7) as 𝑙𝑝𝑒𝑛 is directly optimised and not its gradient, addition-
ally model coefficients are iteratively updated instead of a more general model form. The
algorithm is implemented in CoxBoost (Harold Binder 2013). Experiments suggest that
including the ‘correct’ mandatory covariates may increase predictive performance (Harald
Binder and Schumacher 2008). CoxBoost is less accessible than other boosting methods as
it requires a unique boosting algorithm, as such only one off-shelf implementation appears

4On notation, note that P𝑖𝑗 refers to the penalty matrix in the 𝑖th iteration for the 𝑗th set of indices,
whereas 𝑃𝑖𝑗 is the (𝑖, 𝑗)th element in the matrix P.
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to exist and even this implementation has been removed from CRAN as of 2020-11-11.
CoxBoost is also less transparent as the underlying algorithm is more complex, though is
well-explained by the authors (Harald Binder and Schumacher 2008). There is good indi-
cation that CoxBoost is performant (R. E. B. Sonabend 2021). In a non-medical domain,
where performance may be the most important metric, then perhaps CoxBoost can be
recommended as a powerful model. However, when sensitive predictions are required, Cox-
Boost may not be recommended. Further papers studying the model and more off-shelf
implementations could change this in the future.

15.1.2.2 Ranking Survival Models

The ranking survival models in this section are all unified as they make predictions of the
linear predictor, ̂𝑔(𝑋∗) = 𝑋∗ ̂𝛽.5

GBM-AFT {#mod-gbmaft}\ Schmid and Hothorn (2008) (Schmid and Hothorn 2008b)
published a GBM for accelerated failure time models in response to PH-boosted models
that may not be suitable for non-PH data. Their model fits into the GBM framework
by assuming a fully-parametric AFT and simultaneously estimating the linear predictor,

̂𝑔(𝑋𝑖) = ̂𝜂, and the scale parameter, 𝜎̂, controlling the amount of noise in the distribution.
The (fully-parametric) AFT is defined by

log𝑌 = 𝜂 + 𝜎𝑊

where 𝑊 is a random variable independent of the covariates that follows a given distribution
and controls the noise in the model. By assuming a distribution on 𝑊 , a distribution is
assumed for the full parametric model. The full likelihood, ℒ, is given by

ℒ(𝒟𝑡𝑟𝑎𝑖𝑛|𝜇, 𝜎, 𝑊) =
𝑛

∏
𝑖=1

[ 1
𝜎 𝑓𝑊 ( log(𝑇𝑖) − 𝜇

𝜎 )]
Δ𝑖[𝑆𝑊 ( log(𝑇𝑖) − 𝜇

𝜎 )]
(1−Δ𝑖)

(15.3)

where 𝑓𝑊 , 𝑆𝑊 is the pdf and survival function of 𝑊 for a given distribution. By setting
𝜇 ∶= 𝑔(𝑋𝑖), 𝜎 is then rescaled according to known results depending on the distribution
(Klein and Moeschberger 2003). The gradient of the negative log-likelihood, −𝑙, is minimised
in the 𝑚th iteration where

𝑙(𝒟𝑡𝑟𝑎𝑖𝑛| ̂𝑔, 𝜎̂, 𝑊) =
𝑛

∑
𝑖=1

Δ𝑖[ − log𝜎 + log 𝑓𝑊 ( log(𝑇𝑖) − ̂𝑔𝑚−1(𝑋𝑖)
𝜎̂𝑚−1

)]+

(1 − Δ𝑖)[ log𝑆𝑊 ( log(𝑇𝑖) − ̂𝑔𝑚−1(𝑋𝑖)
𝜎̂𝑚−1

)]

where ̂𝑔𝑚−1, 𝜎̂𝑚−1 are the location-scale parameters estimated in the previous iteration.
Note this key difference to other GBM methods in which two estimates are made in each
iteration step. In order to allow for this, (7) is run as normal but in addition, after updating

̂𝑔𝑚, one then updates 𝜎̂𝑚 as

𝜎̂𝑚 ∶= argmin
𝜎

−𝑙(𝒟𝑡𝑟𝑎𝑖𝑛|𝑔𝑚, 𝜎, 𝑊)

𝜎0 is initialized at the start of the algorithm with 𝜎0 = 1 suggested (Schmid and Hothorn
2008b).

5This is commonly referred to as a ’linear predictor’ as it directly relates to the boosted linear model (e.g.
Cox PH), however it is more accurately a ’prognostic index’ as the final prediction is not the true linear
predictor.
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This algorithm provides a ranking prediction without enforcing an often-unrealistic PH
assumption on the data. This model is implemented in mboost and xgboost. Experiments
indicate that this may outperform the Cox PH (Schmid and Hothorn 2008b). Moreover the
model has the same transparency and accessibility as the GBM-COX.

GBM-GEH {#mod-gbmgeh}\ The concordance index is likely the most popular measure
of discrimination, this in part due to the fact that it makes little-to-no assumptions about
the data (Chapter 6). A less common measure is the Gehan loss, motivated by the semi-
parametric AFT. Johnson and Long proposed the GBM with Gehan loss, here termed
GBM-GEH, to optimise separation within an AFT framework (Johnson and Long 2011).

The semi-parametric AFT is defined by the linear model,

log𝑌 = 𝜂 + 𝜖

for some error term, 𝜖.
The D-dimensional Gehan loss to minimise is given by,

𝐺𝐷(𝒟𝑡𝑟𝑎𝑖𝑛, ̂𝑔) = − 1
𝑛2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

Δ𝑖( ̂𝑒𝑖 − ̂𝑒𝑗)𝕀( ̂𝑒𝑖 ≤ ̂𝑒𝑗)

where ̂𝑒𝑖 = log𝑇𝑖 − ̂𝑔(𝑋𝑖). The negative gradient of the loss is,

𝑟𝑖𝑚 ∶=
∑𝑛

𝑗=1 Δ𝑗𝕀( ̂𝑒𝑚−1,𝑖 ≥ ̂𝑒𝑚−1,𝑗) − Δ𝑖𝕀( ̂𝑒𝑚−1,𝑖 ≤ ̂𝑒𝑚−1,𝑗)
𝑛

where ̂𝑒𝑚−1,𝑖 = log𝑇𝑖 − ̂𝑔𝑚−1(𝑋𝑖).

(6) then follows naturally substituting the loss and gradient above. The algorithm is
implemented in mboost. Simulation studies on the performance of the model are
inconclusive (Johnson and Long 2011) however the results in (R. E. B. Sonabend
2021) indicate strong predictive performance.

GBM-BUJAR {#mod-gbmbujar}\ GBM-BUJAR is another boosted semi-parametric
AFT. However the algorithm introduced by Wang and Wang (2010) (Z. Wang and Wang
2010) uses Buckley-James imputation and minimisation. This algorithm is almost identical
to a regression GBM (i.e. using squared loss or similar for 𝐿), except with one additional
step to iteratively impute censored survival times. Assuming a semi-parametric AFT model,
the GBM-BUJAR algorithm iteratively updates imputed outcomes with the Buckley-James
estimator (Buckley and James 1979),

𝑇 ∗
𝑚,𝑖 ∶= ̂𝑔𝑚−1(𝑋𝑖)+𝑒𝑚−1,𝑖Δ𝑖 +(1−Δ𝑖)[ ̂𝑆𝐾𝑀(𝑒𝑚−1,𝑖)−1 ∑

𝑒𝑚−1,𝑗>𝑒𝑚−1,𝑖

𝑒𝑚−1,𝑗Δ𝑗 ̂𝑝𝐾𝑀(𝑒𝑚−1,𝑗)]

where ̂𝑔𝑚−1(𝑋𝑖) = ̂𝜂𝑚−1, and ̂𝑆𝐾𝑀 , ̂𝑝𝐾𝑀 are Kaplan-Meier estimates of the survival and
probability mass functions respectively fit on some training data, and 𝑒𝑚−1,𝑖 ∶= log(𝑇𝑖) −
𝑔𝑚−1(𝑋𝑖). Once 𝑇 ∗

𝑚,𝑖 has been updated, (7) continues from with least squares as with any
regression model.

GBM-BUJAR is implemented in bujar (Z. Wang 2019) though without a separated
fit/predict interface, its accessibility is therefore limited. There is no evidence of wide us-
age of this algorithm nor simulation studies demonstrating its predictive ability. Finally,
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there are many known problems with semi-parametric AFT models and the Buckey-James
procedure (Wei 1992), hence GBM-BUJAR is also not transparent.

GBM-UNO {#mod-gbmuno}\ Instead of optimising models based on a given model form,
Chen et al. (Y. Chen et al. 2013) studied direct optimisation of discrimination by Harrell’s
C whereas Mayr and Schmid (Mayr and Schmid 2014) focused instead on Uno’s C. Only
an implementation of the Uno’s C method could be found, this is therefore discussed here
and termed ‘GBM-UNO’.

The GBM-UNO attempts to predict ̂𝑔(𝑋∗) ∶= ̂𝜂 by optimising Uno’s C (Section 6.1),

𝐶𝑈( ̂𝑔, 𝒟𝑡𝑟𝑎𝑖𝑛) =
∑𝑖≠𝑗 Δ𝑖{ ̂𝐺𝐾𝑀(𝑇𝑖)}−2𝕀(𝑇𝑖 < 𝑇𝑗)𝕀( ̂𝑔(𝑋𝑖) > ̂𝑔(𝑋𝑗))

∑𝑖≠𝑗 Δ𝑖{ ̂𝐺𝐾𝑀(𝑇𝑖)}−2𝕀(𝑇𝑖 < 𝑇𝑗)

The GBM algorithm requires that the chosen loss, here 𝐶𝑈 , be differentiable with respect
to ̂𝑔(𝑋), which is not the case here due to the indicator term, 𝕀( ̂𝑔(𝑋𝑖) > ̂𝑔(𝑋𝑗)). Therefore a
smoothed version is instead considered where the indicator is approximated by the sigmoid
function (Ma and Huang 2006),

𝐾(𝑢|𝜎) = (1 + exp(−𝑢/𝜎))−1

where 𝜎 is a hyper-parameter controlling the smoothness of the approximation. The measure
to optimise is then,

𝐶𝑈𝑆𝑚𝑜𝑜𝑡ℎ(𝒟𝑡𝑟𝑎𝑖𝑛|𝜎) = ∑
𝑖≠𝑗

𝑘𝑖𝑗
1 + exp [( ̂𝑔(𝑋𝑗) − ̂𝑔(𝑋𝑖))/𝜎)] (15.4)

with

𝑘𝑖𝑗 = Δ𝑖( ̂𝐺𝐾𝑀(𝑇𝑖))−2𝕀(𝑇𝑖 < 𝑇𝑗)
∑𝑛

𝑖≠𝑗 Δ𝑖( ̂𝐺𝐾𝑀(𝑇𝑖))−2𝕀(𝑇𝑖 < 𝑇𝑗)

The negative gradient at iteration 𝑚 for observation 𝑖 can then be found,

𝑟𝑖𝑚 ∶= −
𝑛

∑
𝑗=1

𝑘𝑖𝑗
− exp( ̂𝑔𝑚−1(𝑋𝑗)− ̂𝑔𝑚−1(𝑋𝑖)

𝜎 )
𝜎(1 + exp( ̂𝑔𝑚−1(𝑋𝑗)− ̂𝑔𝑚−1(𝑋𝑖)

𝜎 ))
(15.5)

(7) can then be followed exactly by substituting this loss and gradient; this is imple-
mented in mboost. One disadvantage of GBM-UNO is that C-index boosting is
more insensitive to overfitting than other methods (Mayr, Hofner, and Schmid
2016), therefore stability selection (Meinshausen and Bühlmann 2010) can be
considered for variable selection; this is possible with mboost. Despite directly
optimising discrimination, simulation studies do not indicate that this model has
better separation than other boosted or lasso models (Mayr and Schmid 2014).
GBM-UNO has the same accessibility, transparency, and performance (R. E. B.
Sonabend 2021) as previous boosting models.
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15.1.3 Conclusions
Componentwise gradient boosting machines are a highly flexible and powerful machine
learning tool. They have proven particularly useful in survival analysis as minimal adjust-
ments are required to make use of off-shelf software. The flexibility of the algorithm allows
all the models above to be implemented in very few R (and other programming languages)
packages.

Boosting is a method that often relies on intensive computing power and therefore dedicated
packages, such as xgboost (T. Chen et al. 2020), exist to push CPU/GPUs to their limits in
order to optimise predictive performance. This can be viewed as a strong advantage though
one should be careful not to focus too much on predictive performance to the detriment of
accessibility and transparency.

Boosting, especially with tree learners, is viewed as a black-box model that is increasingly
difficult to interpret as the number of iterations increase. However, there are several methods
for increasing interpretability, such as variable importance and SHAPs (Lundberg and Lee
2017). There is also evidence that boosting models can outperform the Cox PH (Schmid
and Hothorn 2008b) (not something all ML models can claim).



16
Neural Networks

TODO (150-200 WORDS)

Major changes expected!

This page is a work in progress and major changes will be made over time.

16.1 Neural Networks
Before starting the survey on neural networks, first a comment about their transparency and
accessibility. Neural networks are infamously difficult to interpret and train, with some call-
ing building and training neural networks an ‘art’ (Hastie, Tibshirani, and Friedman 2001).
As discussed in the introduction of this book, whilst neural networks are not transparent
with respect to their predictions, they are transparent with respect to implementation. In
fact the simplest form of neural network, as seen below, is no more complex than a simple
linear model. With regard to accessibility, whilst it is true that defining a custom neural
network architecture is complex and highly subjective, established models are implemented
with a default architecture and are therefore accessible ‘off-shelf’.

16.1.1 Neural Networks for Regression
(Artificial) Neural networks (ANNs) are a class of model that fall within the greater
paradigm of deep learning. The simplest form of ANN, a feed-forward single-hidden-layer net-
work, is a relatively simple algorithm that relies on linear models, basic activation functions,
and simple derivatives. A short introduction to feed-forward regression ANNs is provided
to motivate the survival models. This focuses on single-hidden-layer models and increasing
this to multiple hidden layers follows relatively simply.

The single hidden-layer network is defined through three equations

𝑍𝑚 = 𝜎(𝛼0𝑚 + 𝛼𝑇
𝑚𝑋𝑖), 𝑚 = 1, ..., 𝑀 (16.1)

𝑇 = 𝛽0𝑘 + 𝛽𝑇
𝑘 𝑍, 𝑘 = 1, .., 𝐾 (16.2)

𝑔𝑘(𝑋𝑖) = 𝜙𝑘(𝑇 ) (16.3)

where (𝑋1, ..., 𝑋𝑛) 𝑖.𝑖.𝑑.∼ 𝑋 are the usual training data, 𝛼0𝑚, 𝛽0 are bias parameters, and
𝜃 = {𝛼𝑚, 𝛽} (𝑚 = 1, .., , 𝑀) are model weights where 𝑀 is the number of hidden units. 𝐾
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is the number of classes in the output, which for regression is usually 𝐾 = 1. The function
𝜙 is a ‘link’ or ‘activation function’, which transforms the predictions in order to provide
an outcome of the correct return type; usually in regression, 𝜙(𝑥) = 𝑥. 𝜎 is the ‘activation
function’, which transforms outputs from each layer. The 𝛼𝑚 parameters are often referred
to as ‘activations’. Different activation functions may be used in each layer or the same used
throughout, the choice is down to expert knowledge. Common activation functions seen in
this section include the sigmoid function,

𝜎(𝑣) = (1 + exp(−𝑣))−1

tanh function,
𝜎(𝑣) = exp(𝑣) − exp(−𝑣)

exp(𝑣) + exp(−𝑣) (16.4)

and ReLU (Nair and Hinton 2010)

𝜎(𝑣) = max(0, 𝑣) (16.5)

A single-hidden-layer model can also be expressed in a single equation, which highlights the
relative simplicity of what may appear a complex algorithm.

𝑔𝑘(𝑋𝑖) = 𝜎0(𝛽𝑘0 +
𝐻

∑
ℎ=1

(𝛽𝑘ℎ𝜎ℎ(𝛽ℎ0 +
𝑀

∑
𝑚=1

𝛽ℎ𝑚𝑋𝑖;𝑚)) (16.6)

where 𝐻 are the number of hidden units, 𝛽 are the model weights, 𝜎ℎ is the activation
function in unit ℎ, also 𝜎0 is the output unit activation, and 𝑋𝑖;𝑚 is the 𝑖th observation
features in the 𝑚th hidden unit.

An example feed-forward single-hidden-layer regression ANN is displayed in (Figure 16.1).
This model has 10 input units, 13 hidden units, and one output unit; two bias parameters
are fit. The model is described as ‘feed-forward’ as there are no cycles in the node and
information is passed forward from the input nodes (left) to the output node (right).

Back-Propagation

The model weights, 𝜃, in this section are commonly fit by ‘back-propagation’ although this
method is often considered inefficient compared to more recent advances. A brief pseudo-
algorithm for the process is provided below.

Let 𝐿 be a chosen loss function for model fitting, let 𝜃 = (𝛼, 𝛽) be model weights, and let
𝐽 ∈ ℕ>0 be the number of iterations to train the model over. Then the back-propagation
method is given by,

• For 𝑗 = 1, ..., 𝐽 : [] Forward Pass [i.] Fix weights 𝜃(𝑗−1). [ii.] Compute predictions ̂𝑌 ∶=
̂𝑔(𝑗)
𝑘 (𝑋𝑖|𝜃(𝑗−1)) with (Equation 16.6). [] Backward Pass [iii.] Calculate the gradients of the

loss 𝐿( ̂𝑌 |𝒟𝑡𝑟𝑎𝑖𝑛). [] Update *[iv.] Update 𝛼(𝑟), 𝛽(𝑟) with gradient descent.
• End For

In regression, a common choice for 𝐿 is the squared loss,

𝐿( ̂𝑔, 𝜃|𝒟𝑡𝑟𝑎𝑖𝑛) =
𝑛

∑
𝑖=1

(𝑌𝑖 − ̂𝑔(𝑋𝑖|𝜃))2

which may help illustrate how the training outcome, (𝑌1, ..., 𝑌𝑛) 𝑖.𝑖.𝑑.∼ 𝑌 , is utilised for model
fitting.
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Figure 16.1: Single-hidden-layer artificial neural network with 13 hidden units fit on the
mtcars (Henderson and Velleman 1981) dataset using the nnet (N. Venables and D. Ripley
2002) package, and gamlss.add (Stasinopoulos et al. 2020) for plotting. Left column are
input variables, I1-I10, second column are 13 hidden units, H1-H13, right column is single
output variable, O1. B1 and B2 are bias parameters.
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Making Predictions

Once the model is fitted, predictions for new data follow by passing the testing data as
inputs to the model with fitted weights,

𝑔𝑘(𝑋∗) = 𝜎0( ̂𝛽𝑘0 +
𝐻

∑
ℎ=1

( ̂𝛽𝑘ℎ𝜎ℎ( ̂𝛽ℎ0 +
𝑀

∑
𝑚=1

̂𝛽ℎ𝑚𝑋∗
𝑚))

Hyper-Parameters

In practice, a regularization parameter, 𝜆, is usually added to the loss function in order to
help avoid overfitting. This parameter has the effect of shrinking model weights towards
zero and hence in the context of ANNs regularization is usually referred to as ‘weight decay’.
The value of 𝜆 is one of three important hyper-parameters in all ANNs, the other two are:
the range of values to simulate initial weights from, and the number of hidden units, 𝑀 .

The range of values for initial weights is usually not tuned but instead a consistent range
is specified and the neural network is trained multiple times to account for randomness in
initialization.

The regularization parameter and number of hidden units, 𝑀 , depend on each other and
have a similar relationship to the learning rate and number of iterations in the GBMs
(Section 15.1). Like the GBMs, it is simplest to set a high number of hidden units and then
tune the regularization parameter (Bishop 2006; Hastie, Tibshirani, and Friedman 2001).
Determining how many hidden layers to include, and how to connect them, is informed by
expert knowledge and well beyond the scope of this book; decades of research has been
required to derive sensible new configurations.

Training Batches

ANNs can either be trained using complete data, in batches, or online. This decision is
usually data-driven and will affect the maximum number of iterations used to train the
algorithm; as such this will also often be chosen by expert-knowledge and not empirical
methods such as cross-validation.

Neural Terminology

Neural network terminology often reflects the structures of the brain. Therefore ANN units
are referred to as nodes or neurons and sometimes the connections between neurons are
referred to as synapses. Neurons are said to be ‘fired’ if they are ‘activated’. The simplest
example of activating a neuron is with the Heaviside activation function with a threshold
of 0: 𝜎(𝑣) = 𝕀(𝑣 ≥ 0). Then a node is activated and passes its output to the next layer if its
value is positive, otherwise it contributes no value to the next layer.

16.1.2 Neural Networks for Survival Analysis
Surveying neural networks is a non-trivial task as there has been a long history in machine
learning of publishing very specific data-driven neural networks with limited applications;
this is also true in survival analysis. This does mean however that where limited develop-
ments for survival were made in other machine learning classes, ANN survival adaptations
have been around for several decades. A review in 2000 by Schwarzer et al. surveyed 43
ANNs for diagnosis and prognosis published in the first half of the 90s, however only up to
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ten of these are specifically for survival data.1 Of those, Schwarzer et al. deemed three to
be ‘na”ive applications to survival data’, and recommended for future research models de-
veloped by Liestøl et al. (1994) (Liestol, Andersen, and Andersen 1994), Faraggi and Simon
(1995) (Faraggi and Simon 1995), and Biganzoli et al. (1998) (E. Biganzoli et al. 1998).

This survey will not be as comprehensive as the 2000 survey, and nor has any survey since,
although there have been several ANN reviews (B. D. Ripley and Ripley 2001; Huang et al.
2020b; Ohno-Machado 1996; Yang 2010; W. Zhu et al. 2020). ANNs are considered to be
a black-box model, with interpretability decreasing steeply as the number of hidden layers
and nodes increases. In terms of accessibility there have been relatively few open-source
packages developed for survival ANNs; where these are available the focus has historically
been in Python, with no R implementations. The new survivalmodels (R. Sonabend 2020)
package,2 implements these Python models via reticulate (Ushey, Allaire, and Tang 2020).
No recurrent neural netwoks are included in this survey though the survival models SRN (Oh
et al. 2018) and RNN-Surv (Giunchiglia, Nemchenko, and Schaar 2018) are acknowledged.

This survey is made slightly more difficult as neural networks are often proposed for many
different tasks, which are not necessarily clearly advertised in a paper’s title or abstract.
For example, many papers claim to use neural networks for survival analysis and make
comparisons to Cox models, whereas the task tends to be death at a particular (usually 5-
year) time-point (classification) (Han et al. 2018; Lundin et al. 1999; B. D. Ripley and Ripley
2001; R. M. Ripley, Harris, and Tarassenko 1998; Huseyin Seker et al. 2002), which is often
not made clear until mid-way through the paper. Reviews and surveys have also conflated
these different tasks, for example a very recent review concluded superior performance of
ANNs over Cox models, when in fact this is only in classification (Huang et al. 2020a) (RM2)
{sec:car_reduxstrats_mistakes}. To clarify, this form of classification task does fall into the
general field of survival analysis, but not the survival task ((box-task-surv?)). Therefore
this is not a comment on the classification task but a reason for omitting these models from
this survey.

Using ANNs for feature selection (often in gene expression data) and computer vision is
also very common in survival analysis, and indeed it is in this area that most success has
been seen (Bello et al. 2019; Y.-C. Chen, Ke, and Chiu 2014; Cui et al. 2020; Lao et al. 2017;
McKinney et al. 2020; Rietschel, Yoon, and Schaar 2018; H. Seker et al. 2002; Zhang et al.
2020; X. Zhu, Yao, and Huang 2016), but these are again beyond the scope of this survey.

The key difference between neural networks is in their output layer, required data transfor-
mations, the model prediction, and the loss function used to fit the model. Therefore the
following are discussed for each of the surveyed models: the loss function for training, 𝐿,
the model prediction type, ̂𝑔, and any required data transformation. Notation is continued
from the previous surveys with the addition of 𝜃 denoting model weights (which will be
different for each model).

16.1.2.1 Probabilistic Survival Models

Unlike other classes of machine learning models, the focus in ANNs has been on probabilistic
models. The vast majority make these predictions via reduction to binary classification ??.
Whilst almost all of these networks implicitly reduce the problem to classification, most
are not transparent in exactly how they do so and none provide clear or detailed interface
points in implementation allowing for control over this reduction. Most importantly, the

1Schwarzer conflates the prognosis and survival task, therefore it is not clear if all 10 of these are for
time-to-event data (at least five definitely are).

2Created in order to run the experiments in [@Sonabend2021b].



116 Neural Networks

majority of these models do not detail how valid survival predictions are derived from the
binary setting,3 which is not just a theoretical problem as some implementations, such as
the Logistic-Hazard model in pycox (Kvamme 2018), have been observed to make survival
predictions outside the range [0, 1]. This is not a statement about the performance of models
in this section but a remark about the lack of transparency across all probabilistic ANNs.

Many of these algorithms use an approach that formulate the Cox PH as a non-linear model
and minimise the partial likelihood. These are referred to as ‘neural-Cox’ models and the
earliest appears to have been developed by Faraggi and Simon (Faraggi and Simon 1995). All
these models are technically composites that first predict a ranking, however they assume
a PH form and in implementation they all appear to return a probabilistic prediction.

ANN-COX {#mod-anncox}\ Faraggi and Simon (Faraggi and Simon 1995) proposed a
non-linear PH model

ℎ(𝜏|𝑋𝑖, 𝜃) = ℎ0(𝜏) exp(𝜙(𝑋𝑖𝛽)) (16.7)

where 𝜙 is the sigmoid function and 𝜃 = {𝛽} are model weights. This model, ‘ANN-COX’,
estimates the prediction functional, ̂𝑔(𝑋∗) = 𝜙(𝑋∗ ̂𝛽). The model is trained with the partial-
likelihood function

𝐿( ̂𝑔, 𝜃|𝒟𝑡𝑟𝑎𝑖𝑛) =
𝑛

∏
𝑖=1

exp(∑𝑀
𝑚=1 𝛼𝑚 ̂𝑔𝑚(𝑋∗))

∑𝑗∈ℛ𝑡𝑖
exp(∑𝑀

𝑚=1 𝛼𝑚 ̂𝑔𝑚(𝑋∗))

where ℛ𝑡𝑖
is the risk group alive at 𝑡𝑖; 𝑀 is the number of hidden units; ̂𝑔𝑚(𝑋∗) = (1 +

exp(−𝑋∗ ̂𝛽𝑚))−1; and 𝜃 = {𝛽, 𝛼} are model weights.

The authors proposed a single hidden layer network, trained using back-propagation and
weight optimisation with Newton-Raphson. This architecture did not outerperform a Cox
PH (Faraggi and Simon 1995). Further adjustments including (now standard) pre-processing
and hyper-parameter tuning did not improve the model performance (Mariani et al. 1997).
Further independent studies demonstrated worse performance than the Cox model (Faraggi
and Simon 1995; Xiang et al. 2000).

COX-NNET {#mod-coxnnet}\ COX-NNET (Ching, Zhu, and Garmire 2018) updates
the ANN-COX by instead maximising the regularized partial log-likelihood

𝐿( ̂𝑔, 𝜃|𝒟𝑡𝑟𝑎𝑖𝑛, 𝜆) =
𝑛

∑
𝑖=1

Δ𝑖[ ̂𝑔(𝑋𝑖) − log( ∑
𝑗∈ℛ𝑡𝑖

exp( ̂𝑔(𝑋𝑗)))] + 𝜆(‖𝛽‖2 + ‖𝑤‖2)

with weights 𝜃 = (𝛽, 𝑤) and where ̂𝑔(𝑋𝑖) = 𝜎(𝑤𝑋𝑖 + 𝑏)𝑇 𝛽 for bias term 𝑏, and activation
function 𝜎; 𝜎 is chosen to be the tanh function ((Equation 16.4)). In addition to weight
decay, dropout (Srivastava et al. 2014) is employed to prevent overfitting. Dropout can be
thought of as a similar concept to the variable selection in random forests, as each node is
randomly deactivated with probability 𝑝, where 𝑝 is a hyper-parameter to be tuned.

Independent simulation studies suggest that COX-NNET does not outperform the Cox PH
(Michael F. Gensheimer and Narasimhan 2019).

DeepSurv {#mod-deepsurv}\ DeepSurv (J. L. Katzman et al. 2018) extends these models
to deep learning with multiple hidden layers. The chosen error function is the average

3One could assume they use procedures such as those described in Tutz and Schmid (2016) [@Tutz2016]
but there is rarely transparent writing to confirm this.
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negative log-partial-likelihood with weight decay

𝐿( ̂𝑔, 𝜃|𝒟𝑡𝑟𝑎𝑖𝑛, 𝜆) = − 1
𝑛∗

𝑛
∑
𝑖=1

Δ𝑖[( ̂𝑔(𝑋𝑖) − log ∑
𝑗∈ℛ𝑡𝑖 )

exp( ̂𝑔(𝑋𝑗))] + 𝜆‖𝜃‖2
2

where 𝑛∗ ∶= ∑𝑛
𝑖=1 𝕀(Δ𝑖 = 1) is the number of uncensored observations and ̂𝑔(𝑋𝑖) = 𝜙(𝑋𝑖|𝜃)

is the same prediction object as the ANN-COX. State-of-the-art methods are used for data
pre-processing and model training. The model architecture uses a combination of fully-
connected and dropout layers. Benchmark experiments by the authors indicate that Deep-
Surv can outperform the Cox PH in ranking tasks (J. Katzman et al. 2016; J. L. Katzman
et al. 2018) although independent experiments do not confirm this (Zhao and Feng 2020).



118 Neural Networks

**Cox-Time** {#mod-coxtime}\ Kvamme et al. (Kvamme, Borgan, and Scheel 2019) build
on these models by allowing time-varying effects. The loss function to minimise, with regu-
larization, is given by

𝐿( ̂𝑔, 𝜃|𝒟𝑡𝑟𝑎𝑖𝑛, 𝜆) = 1
𝑛 ∑

𝑖∶Δ𝑖=1
log( ∑

𝑗∈ℛ𝑡𝑖

exp[ ̂𝑔(𝑋𝑗, 𝑇𝑖) − ̂𝑔(𝑋𝑖, 𝑇𝑖)]) + 𝜆 ∑
𝑖∶Δ𝑖=1

∑
𝑗∈ℛ𝑡𝑖

| ̂𝑔(𝑋𝑗, 𝑇𝑖)|

where ̂𝑔 = ̂𝑔1, ..., ̂𝑔𝑛 is the same non-linear predictor but with a time interaction and 𝜆 is
the regularization parameter. The model is trained with stochastic gradient descent and
the risk set, ℛ𝑡𝑖

, in the equation above is instead reduced to batches, as opposed to the
complete dataset. ReLU activations (Nair and Hinton 2010) and dropout are employed in
training. Benchmark experiments indicate good performance of Cox-Time, though no formal
statistical comparisons are provided and hence no comment about general performance can
be made.

ANN-CDP {#mod-anncdp}\ One of the earliest ANNs that was noted by Schwarzer et al.
(Schwarzer, Vach, and Schumacher 2010) was developed by Liestøl et al. (Liestol, Andersen,
and Andersen 1994) and predicts conditional death probabilities (hence ‘ANN-CDP’). The
model first partitions the continuous survival times into disjoint intervals ℐ𝑘, 𝑘 = 1, ..., 𝑚
such that ℐ𝑘 is the interval (𝑡𝑘−1, 𝑡𝑘]. The model then studies the logistic Cox model (pro-
portional odds) (Cox 1972) given by

𝑝𝑘(x)
𝑞𝑘(x) = exp(𝜂 + 𝜃𝑘)

where 𝑝𝑘 = 1 − 𝑞𝑘, 𝜃𝑘 = log(𝑝𝑘(0)/𝑞𝑘(0)) for some baseline probability of survival, 𝑞𝑘(0),
to be estimated; 𝜂 is the usual linear predictor, and 𝑞𝑘 = 𝑃(𝑇 ≥ 𝑇𝑘|𝑇 ≥ 𝑇𝑘−1) is the
conditional survival probability at time 𝑇𝑘 given survival at time 𝑇𝑘−1 for 𝑘 = 1, ..., 𝐾 total
time intervals. A logistic activation function is used to predict ̂𝑔(𝑋∗) = 𝜙(𝜂 + 𝜃𝑘), which
provides an estimate for ̂𝑝𝑘.

The model is trained on discrete censoring indicators 𝐷𝑘𝑖 such that 𝐷𝑘𝑖 = 1 if individual
𝑖 dies in interval ℐ𝑘 and 0 otherwise. Then with 𝐾 output nodes and maximum likelihood
estimation to find the model parameters, ̂𝜂, the final prediction provides an estimate for
the conditional death probabilities ̂𝑝𝑘. The negative log-likelihood to optimise is given by

𝐿( ̂𝑔, 𝜃|𝒟𝑡𝑟𝑎𝑖𝑛) =
𝑛

∑
𝑖=1

𝑚𝑖

∑
𝑘=1

[𝐷𝑘𝑖 log( ̂𝑝𝑘(𝑋𝑖)) + (1 − 𝐷𝑘𝑖) log( ̂𝑞𝑘(𝑋𝑖))]

where 𝑚𝑖 is the number of intervals in which observation 𝑖 is not censored.
Liestøl et al.{} discuss different weighting options and how they correspond to the PH
assumption. In the most generalised case, a weight-decay type regularization is applied to
the model weights given by

𝛼 ∑
𝑙

∑
𝑘

(𝑤𝑘𝑙 − 𝑤𝑘−1,𝑙)2

where 𝑤 are weights, and 𝛼 is a hyper-parameter to be tuned, which can be used alongside
standard weight decay. This corresponds to penalizing deviations from proportionality thus
creating a model with approximate proportionality. The authors also suggest the possibility
of fixing the weights to be equal in some nodes and different in others; equal weights strictly
enforces the proportionality assumption. Their simulations found that removing the propor-
tionality assumption completely, or strictly enforcing it, gave inferior results. Comparing
their model to a standard Cox PH resulted in a ‘better’ negative log-likelihood, however
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this is not a precise evaluation metric and an independent simulation would be preferred.
Finally Listøl et al. included a warning “The flexibility is, however, obtained at unquestion-
able costs: many parameters, difficult interpretation of the parameters and a slow numerical
procedure” (Liestol, Andersen, and Andersen 1994).

PLANN {#mod-plann}\ Biganzoli et al. (1998) (E. Biganzoli et al. 1998) studied the
same proportional-odds model as the ANN-CDP (Liestol, Andersen, and Andersen 1994).
Their model utilises partial logistic regression (Efron 1988) with added hidden nodes,
hence ‘PLANN’. Unlike ANN-CDP, PLANN predicts a smoothed hazard function by using
smoothing splines. The continuous time outcome is again discretised into disjoint intervals
𝑡𝑚, 𝑚 = 1, ..., 𝑀 . At each time-interval, 𝑡𝑚, the number of events, 𝑑𝑚, and number of
subjects at risk, 𝑛𝑚, can be used to calculate the discrete hazard function,4

ℎ̂𝑚 = 𝑑𝑚
𝑛𝑚

, 𝑚 = 1, ..., 𝑀 (16.8)

This quantity is used as the target to train the neural network. The survival function is
then estimated by the Kaplan-Meier type estimator,

̂𝑆(𝜏) = ∏
𝑚∶𝑡𝑚≤𝜏

(1 − ℎ̂𝑚) (16.9)

The model is fit by employing one of the more ‘usual’ survival reduction strategies in which
an observation’s survival time is treated as a covariate in the model (Tutz and Schmid
2016). As this model uses discrete time, the survival time is discretised into one of the
𝑀 intervals. This approach removes the proportional odds constraint as interaction effects
between time and covariates can be modelled (as time-updated covariates). Again the model
makes predictions at a given time 𝑚, 𝜙(𝜃𝑚 + 𝜂), where 𝜂 is the usual linear predictor, 𝜃 is
the baseline proportional odds hazard 𝜃𝑚 = log(ℎ𝑚(0)/(1 − ℎ𝑚(0)). The logistic activation
provides estimates for the discrete hazard,

ℎ𝑚(𝑋𝑖) = exp(𝜃𝑚 + ̂𝜂)
1 + exp(𝜃𝑚 + ̂𝜂)

which is smoothed with cubic splines (Efron 1988) that require tuning.

A cross-entropy error function is used for training

𝐿(ℎ̂, 𝜃|𝒟𝑡𝑟𝑎𝑖𝑛, 𝑎) = −
𝑀

∑
𝑚=1

[ℎ̂𝑚 log(ℎ𝑙(𝑋𝑖, 𝑎𝑙)
ℎ̂𝑚

) + (1 − ℎ̂𝑚) log(1 − ℎ𝑙(𝑋𝑖, 𝑎𝑙)
1 − ℎ̂𝑚

)]𝑛𝑚

where ℎ𝑙(𝑋𝑖, 𝑎𝑙) is the discrete hazard ℎ𝑙 with smoothing at mid-points 𝑎𝑙. Weight decay
can be applied and the authors suggest 𝜆 ≈ 0.01 − 0.1 (E. Biganzoli et al. 1998), though
they make use of an AIC type criterion instead of cross-validation.

This model makes smoothed hazard predictions at a given time-point, 𝜏 , by including 𝜏
in the input covariates 𝑋𝑖. Therefore the model first requires transformation of the input
data by replicating all observations and replacing the single survival indicator Δ𝑖, with a
time-dependent indicator 𝐷𝑖𝑘, the same approach as in ANN-CDP. Further developments
have extended the PLANN to Bayesian modelling, and for competing risks (E. M. Biganzoli,
Ambrogi, and Boracchi 2009).

4Derivation of this as a ’hazard’ estimator follows trivially by comparison to the Nelson-Aalen estimator.
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No formal comparison is made to simpler model classes. The authors recommend ANNs
primarily for exploration, feature selection, and understanding underlying patterns in the
data (E. M. Biganzoli, Ambrogi, and Boracchi 2009).

Nnet-survival {#mod-nnetsurvival}\ Aspects of the PLANN algorithm have been gen-
eralised into discrete-time survival algorithms in several papers (Michael F. Gensheimer
and Narasimhan 2019; Kvamme2019?; Mani et al. 1999; Street 1998). Various estimates
have been derived for transforming the input data to a discrete hazard or survival function.
Though only one is considered here as it is the most modern and has a natural interpre-
tation as the ‘usual’ Kaplan-Meier estimator for the survival function. Others by Street
(1998) (Street 1998) and Mani (1999) (Mani et al. 1999) are acknowledged. The discrete
hazard estimator (Equation 16.8), ℎ̂, is estimated and these values are used as the targets
for the ANN. For the error function, the mean negative log-likelihood for discrete time
(Kvamme2019?) is minimised to estimate ℎ̂,

𝐿(ℎ̂, 𝜃|𝒟𝑡𝑟𝑎𝑖𝑛) = − 1
𝑛

𝑛
∑
𝑖=1

𝑘(𝑇𝑖)
∑
𝑗=1

(𝕀(𝑇𝑖 = 𝜏𝑗, Δ𝑖 = 1) log[ℎ̂𝑖(𝜏𝑗)] +

(1 − 𝕀(𝑇𝑖 = 𝜏𝑗, Δ𝑖 = 1)) log(1 − ℎ̂𝑖(𝜏𝑗)))
where 𝑘(𝑇𝑖) is the time-interval index in which observation 𝑖 dies/is censored, 𝜏𝑗 is the 𝑗th
discrete time-interval, and the prediction of ℎ̂ is obtained via

ℎ̂(𝜏𝑗|𝒟𝑡𝑟𝑎𝑖𝑛) = [1 + exp(− ̂𝑔𝑗(𝒟𝑡𝑟𝑎𝑖𝑛))]−1

where ̂𝑔𝑗 is the 𝑗th output for 𝑗 = 1, ..., 𝑚 discrete time intervals. The number of units
in the output layer for these models corresponds to the number of discrete-time intervals.
Deciding the width of the time-intervals is an additional hyper-parameter to consider.

Gensheimer and Narasimhan’s ‘Nnet-survival’ (Michael F. Gensheimer and Narasimhan
2019) has two different implementations. The first assumes a PH form and predicts the
linear predictor in the final layer, which can then be composed to a distribution. Their
second ‘flexible’ approach instead predicts the log-odds of survival in each node, which are
then converted to a conditional probability of survival, 1 − ℎ𝑗, in a given interval using the
sigmoid activation function. The full survival function can be derived with (Equation 16.9).
The model has been demonstrated not to outperform the Cox PH with respect to Harrell’s
C or the Graf (Brier) score (Michael F. Gensheimer and Narasimhan 2019).

PC-Hazard {#mod-pchazard}\ Kvamme and Borgan deviate from nnet-survival in their
‘PC-Hazard’ (Kvamme2019?) by first considering a discrete-time approach with a soft-
max activation function influenced by multi-class classification. They expand upon this by
studying a piecewise constant hazard function in continuous time and defining the mean
negative log-likelihood as

𝐿( ̂𝑔, 𝜃|𝒟𝑡𝑟𝑎𝑖𝑛) = − 1
𝑛

𝑛
∑
𝑖=1

(Δ𝑖𝑋𝑖 log ̃𝜂𝑘(𝑇𝑖) − 𝑋𝑖 ̃𝜂𝑘(𝑇𝑖)𝜌(𝑇𝑖) −
𝑘(𝑇𝑖)−1

∑
𝑗=1

̃𝜂𝑗𝑋𝑖)

where 𝑘(𝑇𝑖) and 𝜏𝑖 is the same as defined above, 𝜌(𝑡) = 𝑡−𝜏𝑘(𝑡)−1
Δ𝜏𝑘(𝑡)

, Δ𝜏𝑗 = 𝜏𝑗 − 𝜏𝑗−1, and
̃𝜂𝑗 ∶= log(1 + exp( ̂𝑔𝑗(𝑋𝑖)) where again ̂𝑔𝑗 is the 𝑗th output for 𝑗 = 1, ..., 𝑚 discrete time

intervals. Once the weights have been estimated, the predicted survival function is given by

̂𝑆(𝜏 , 𝑋∗|𝒟𝑡𝑟𝑎𝑖𝑛) = exp(−𝑋∗ ̃𝜂𝑘(𝜏)𝜌(𝜏))
𝑘(𝜏)−1
∏
𝑗=1

exp(− ̃𝜂𝑗(𝑋∗))



Neural Networks 121

Benchmark experiments indicate similar performance to nnet-survival (Kvamme2019?),
an unsurprising result given their implementations are identical with the exception of the
loss function (Kvamme2019?), which is also similar for both models. A key result found
that varying values for interval width lead to significant differences and therefore should be
carefully tuned.

DNNSurv {#mod-dnnsurv}\ A very recent (pre-print) approach (Zhao and Feng 2020)
instead first computes ‘pseudo-survival probabilities’ and uses these to train a regression
ANN with sigmoid activation and squared error loss. These pseudo-probabilities are com-
puted using a jackknife-style estimator given by

̃𝑆𝑖𝑗(𝑇𝑗+1, ℛ𝑡𝑗
) = 𝑛𝑗 ̂𝑆(𝑇𝑗+1|ℛ𝑡𝑗

) − (𝑛𝑗 − 1) ̂𝑆−𝑖(𝑇𝑗+1|ℛ𝑡𝑗
)

where ̂𝑆 is the IPCW weighted Kaplan-Meier estimator (defined below) for risk set ℛ𝑡𝑗
,

̂𝑆−𝑖 is the Kaplan-Meier estimator for all observations in ℛ𝑡𝑗
excluding observation 𝑖, and

𝑛𝑗 ∶= |ℛ𝑡𝑗
|. The IPCW weighted Kaplan-Meier estimate is found via the IPCW Nelson-

Aalen estimator,

𝐻̂(𝜏|𝒟𝑡𝑟𝑎𝑖𝑛) =
𝑛

∑
𝑖=1

∫
𝜏

0

𝕀(𝑇𝑖 ≤ 𝑢, Δ𝑖 = 1)𝑊̂𝑖(𝑢)
∑𝑛

𝑗=1 𝕀(𝑇𝑗 ≥ 𝑢)𝑊̂𝑗(𝑢)
𝑑𝑢

where 𝑊̂𝑖, 𝑊̂𝑗 are subject specific IPC weights.

In their simulation studies, they found no improvement over other proposed neural networks.
Arguably the most interesting outcome of their paper are comparisons of multiple survival
ANNs at specific time-points, evaluated with C-index and Brier score. Their results indicate
identical performance from all models. They also provide further evidence of neural networks
not outperforming a Cox PH when the PH assumption is valid. However, in their non-PH
dataset, DNNSurv appears to outperform the Cox model (no formal tests are provided).
Data is replicated similarly to previous models except that no special indicator separates
censoring and death, this is assumed to be handled by the IPCW pseudo probabilities.

DeepHit {#mod-deephit}\ DeepHit (C. Lee et al. 2018) was originally built to accommo-
date competing risks, but only the non-competing case is discussed here (Kvamme, Borgan,
and Scheel 2019). The model builds on previous approaches by discretising the continu-
ous time outcome, and makes use of a composite loss. It has the advantage of making no
parametric assumptions and directly predicts the probability of failure in each time-interval
(which again correspond to different terminal nodes), i.e. ̂𝑔(𝜏𝑘|𝒟𝑡𝑒𝑠𝑡) = ̂𝑃 (𝑇 ∗ = 𝜏𝑘|𝑋∗)
where again 𝜏𝑘, 𝑘 = 1, ..., 𝐾 are the distinct time intervals. The estimated survival function
is found with ̂𝑆(𝜏𝐾|𝑋∗) = 1 − ∑𝐾

𝑘=1 ̂𝑔𝑖(𝜏𝑘|𝑋∗). ReLU activations were used in all fully con-
nected layers and a softmax activation in the final layer. The losses in the composite error
function are given by

𝐿1( ̂𝑔, 𝜃|𝒟𝑡𝑟𝑎𝑖𝑛) = −
𝑁

∑
𝑖=1

[Δ𝑖 log( ̂𝑔𝑖(𝑇𝑖)) + (1 − Δ𝑖) log( ̂𝑆𝑖(𝑇𝑖))]

and
𝐿2( ̂𝑔, 𝜃|𝒟𝑡𝑟𝑎𝑖𝑛, 𝜎) = ∑

𝑖≠𝑗
Δ𝑖𝕀(𝑇𝑖 < 𝑇𝑗)𝜎( ̂𝑆𝑖(𝑇𝑖), ̂𝑆𝑗(𝑇𝑖))

for some convex loss function 𝜎 and where ̂𝑔𝑖(𝑡) = ̂𝑔(𝑡|𝑋𝑖). Again these can be seen to be
a cross-entropy loss and a ranking loss. Benchmark experiments demonstrate the model
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outperforming the Cox PH and RSFs (C. Lee et al. 2018) with respect to separation, and
an independent experiment supports these findings (Kvamme, Borgan, and Scheel 2019).
However, the same independent study demonstrated worse performance than a Cox PH
with respect to the integrated Brier score (Graf et al. 1999).

16.1.2.2 Deterministic Survival Models

Whilst the vast majority of survival ANNs have focused on probabilistic predictions (often
via ranking), a few have also tackled the deterministic or ‘hybrid’ problem.

RankDeepSurv {#mod-rankdeepsurv}\ Jing et al. (Jing et al. 2019) observed the past
two decades of research in survival ANNs and then published a completely novel solution,
RankDeepSurv, which makes predictions for the survival time ̂𝑇 = ( ̂𝑇1, ..., ̂𝑇𝑛). They pro-
posed a composite loss function

𝐿( ̂𝑇 , 𝜃|𝒟𝑡𝑟𝑎𝑖𝑛, 𝛼, 𝛾, 𝜆) = 𝛼𝐿1( ̂𝑇 , 𝑇 , Δ) + 𝛾𝐿2( ̂𝑇 , 𝑇 , Δ) + 𝜆‖𝜃‖2
2

where 𝜃 are the model weights, 𝛼, 𝛾 ∈ ℝ>0, 𝜆 is the shrinkage parameter, by a slight abuse
of notation 𝑇 = (𝑇1, ..., 𝑇𝑛) and Δ = (Δ1, ..., Δ𝑛), and

𝐿1( ̂𝑇 , 𝜃|𝒟𝑡𝑟𝑎𝑖𝑛) = 1
𝑛 ∑

{𝑖∶𝐼(𝑖)=1}
( ̂𝑇𝑖 − 𝑇𝑖)2; 𝐼(𝑖) = {1, Δ𝑖 = 1 ∪ (Δ𝑖 = 0 ∩ ̂𝑇𝑖 ≤ 𝑇𝑖)

0, otherwise

𝐿2( ̂𝑇 , 𝜃|𝒟𝑡𝑟𝑎𝑖𝑛) = 1
𝑛

𝑛
∑

{𝑖,𝑗∶𝐼(𝑖,𝑗)=1}
[(𝑇𝑗 − 𝑇𝑖) − ( ̂𝑇𝑗 − ̂𝑇𝑖)]2; 𝐼(𝑖, 𝑗) = {1, 𝑇𝑗 − 𝑇𝑖 > ̂𝑇𝑗 − ̂𝑇𝑖

0, otherwise

where ̂𝑇𝑖 is the predicted survival time for observation 𝑖. A clear contrast can be made
between these loss functions and the constraints used in SSVM-Hybrid (Vanya Van Belle,
Pelckmans, Van Huffel, et al. 2011) (Section 14.0.2). 𝐿1 is the squared second constraint
in 14.0.2.1 and 𝐿2 is the squared first constraint in 14.0.2.1. However 𝐿1 in RankDeepSurv
discards the squared error difference for all censored observations when the prediction is
lower than the observed survival time; which is problematic as if someone is censored at
time 𝑇𝑖 then it is guaranteed that their true survival time is greater than 𝑇𝑖 (this constraint
may be more sensible if the inequality were reversed). An advantage to this loss is, like
the SSVM-Hybrid, it enables a survival time interpretation for a ranking optimised model;
however these ‘survival times’ should be interpreted with care.

The authors propose a model architecture with several fully connected layers with the ELU
(Clevert, Unterthiner, and Hochreiter 2015) activation function and a single dropout layer.
Determining the success of this model is not straightforward. The authors claim superiority
of RankDeepSurv over Cox PH, DeepSurv, and RSFs however this is an unclear comparison
(RM2) {sec:car_reduxstrats_mistakes} that requires independent study.

16.1.3 Conclusions
There have been many advances in neural networks for survival analysis. It is not possible
to review all proposed survival neural networks without diverting too far from the book
scope. This survey of ANNs should demonstrate two points: firstly that the vast majority
(if not all) of survival ANNs are reduction models that either find a way around censoring
via imputation or discretisation of time-intervals, or by focusing on partial likelihoods only;
secondly that no survival ANN is fully accessible or transparent.

Despite ANNs being highly performant in other areas of supervised learning, there is strong
evidence that the survival ANNs above are inferior to a Cox PH when the data follows
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the PH assumption or when variables are linearly related (Michael F. Gensheimer and
Narasimhan 2018; Luxhoj and Shyur 1997; Ohno-Machado 1997; Puddu and Menotti 2012;
Xiang et al. 2000; Yang 2010; Yasodhara, Bhat, and Goldenberg 2018; Zhao and Feng 2020).
There are not enough experiments to make conclusions in the case when the data is non-PH.
Experiments in (R. E. B. Sonabend 2021) support the finding that survival ANNs are not
performant.

There is evidence that many papers introducing neural networks do not utilise proper
methods of comparison or evaluation (Franz J. Király, Mateen, and Sonabend 2018)
and in conducting this survey, these findings are further supported. Many papers
made claims of being ‘superior’ to the Cox model based on unfair comparisons
(RM2){sec:car_reduxstrats_mistakes} or miscommunicating (or misinterpreting) results
(e.g. (Fotso 2018)). At this stage, it does not seem possible to make any conclusions about
the effectiveness of neural networks in survival analysis. Moreover, even the authors of
these models have pointed out problems with transparency (E. M. Biganzoli, Ambrogi, and
Boracchi 2009; Liestol, Andersen, and Andersen 1994), which was further highlighted by
Schwarzer et al. (Schwarzer, Vach, and Schumacher 2010).

Finally, accessibility of neural networks is also problematic. Many papers do not release their
code and instead just state their networks architecture and available packages. In theory,
this is enough to build the models however this does not guarantee the reproducibility that is
usually expected. For users with a technical background and good coding ability, many of the
models above could be implemented in one of the neural network packages in R, such as nnet
(N. Venables and D. Ripley 2002) and neuralnet (Fritsch, Guenther, and N. Wright 2019);
though in practice the only package that does contain these models, survivalmodels, does
not directly implement the models in R (which is much slower than Python) but provides
a method for interfacing the Python implementations in pycox (Kvamme 2018).
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TODO (150-200 WORDS)

Major changes expected!

This page is a work in progress and major changes will be made over time.

This survey has not exhaustively covered all machine learning models and entire model
classes have been omitted; this short section briefly discusses these classes.

Bayesian Models

In terms of accessibility, many more off-shelf survival model implementations exist in the
frequentist framework. Despite this, there is good evidence that Bayesian survival models,
such as Bayesian neural networks (Bakker et al. 2004; Faraggi et al. 1997), can perform well
(Bishop 2006) and a survey of these models may be explored in future work.

Gaussian Processes

Gaussian Processes (GPs) are a class of model that naturally fit the survival paradigm as
they model the joint distribution of random variables over some continuous domain, often
time. The simplest extension from a standard Cox model to GP is given by the non-linear
hazard

ℎ(𝜏|𝑋𝑖) = ℎ0(𝜏)𝜙(𝑔(𝜏|𝑋𝑖)); 𝑔(⋅) ∼ 𝒢𝒫(0, 𝑘)
where 𝜙 is a non-negative link function, 𝒢𝒫 is a Gaussian process (Rasmussen and Williams
2004), and 𝑘 is a kernel function with parameters to be estimated (Kim and Pavlovic 2018).
Hyper-parameters are learnt by evaluating the likelihood function (Bishop 2006) and in the
context of survival analysis this is commonly performed by assuming an inhomogeneous
Poisson process (Fernández, Rivera, and Teh 2016; Saul 2016; Vehtari and Joensuu 2013).
For a comprehensive survey of GPs for survival, see Saul (2016) (Saul 2016). There is
evidence of GPs outperforming Cox and ML models (Fernández, Rivera, and Teh 2016).
GPs are excluded from this survey due to lack of implementation (thus accessibility) and
poorer transparency. Future research could look at increasing off-shelf accessibility of these
models.

Non-Supervised Learning

As well as pure supervised learning, there are also survival models that use active learning
(Nezhad et al. 2019), transfer learning, or treat survival analysis as a Markov process. As
with GPs, none of these are currently available off-shelf and all require expert knowledge to
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be useful. These are not discussed in detail here but a very brief introduction to the Markov
Process (MP) set-up is provided to motivate further consideration for the area.

(8) visualises the survival set-up as a Markov chain. In each discrete time-point
𝑡1, ..., 𝑡𝐾−1, an individual can either move to the next time-point (and therefore
be alive at that time-point), or move to one of the absorbing states (‘Dead’ and
‘Censored’). The final time-point, 𝑡𝐾, is never visited as an individual must be
dead or censored at the end of a study, and hence are last seen alive at 𝑡𝐾−1.
In this set-up, data is assumed sequential and the time of death or censoring is
determined by the last state at which the individual was seen to be alive, plus one,
i.e. if an individual transitions from 𝑡𝑘 to ‘Death’, then they died at 𝑡𝑘+1. This
setting assumes the Markov property, so that the probability of moving to the
‘next’ state only depends on the current one. This method lends itself naturally
to competing risks, which would extend the ‘Dead’ state to multiple absorbing
states for each risk. Additionally, left-censoring can be naturally incorporated
without further assumptions (Abner, Charnigo, and Kryscio 2013).

This set-up has been considered in survival both for Markov models and in the context of
reinforcement learning (Data Study Group Team 2020), though the latter case is underde-
veloped and future research could pursue this further.
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TODO (150-200 WORDS)
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In this chapter, composition and reduction are formally introduced, defined and demon-
strated within survival analysis. Neither of these are novel concepts in general or in sur-
vival, with several applications already seen earlier when reviewing models (particularly
in neural networks), however a lack of formalisation has led to much repeated work and
at times questionable applications (Section 16.1). The primary purpose of this chapter is
to formalise composition and reduction for survival and to unify references and strategies
for future use. These strategies are introduced in the context of minimal ‘workflows’ and
graphical ‘pipelines’ in order to maximise their generalisability. The pipelines discussed in
this chapter are implemented in mlr3proba.

A workflow is a generic term given to a series of sequential operations. For example a
standard ML workflow is fit/predict/evaluate, which means a model is fit, predictions are
made, and these are evaluated. In this book, a pipeline is the name given to a concrete
workflow. Section 19.1 demonstrates how pipelines are represented in this book.

Composition (Section 19.2) is a general process in which an object is built (or composed)
from other objects and parameters. Reduction (Section 19.3) is a closely related concept that
utilises composition in order to transform one problem into another. Concrete strategies for
composition and reduction are detailed in sections Section 19.4 and Section 19.5.

Notation and Terminology

The notation introduced in Chapter 4 is recapped for use in this chapter: the generative sur-
vival template for the survival setting is given by (𝑋, 𝑇 , Δ, 𝑌 , 𝐶) 𝑡.𝑣.𝑖. 𝒳×𝒯×{0, 1}×𝒯×𝒯
where 𝒳 ⊆ ℝ𝑝 and 𝒯 ⊆ ℝ≥0, where 𝐶, 𝑌 are unobservable, 𝑇 ∶= min{𝑌 , 𝐶}, and Δ = 𝕀(𝑌 =
𝑇 ). Random survival data is given by (𝑋𝑖, 𝑇𝑖, Δ𝑖, 𝑌𝑖, 𝐶𝑖)

𝑖.𝑖.𝑑.∼ (𝑋, 𝑇 , Δ, 𝑌 , 𝐶). Usually data
will instead be presented as a training dataset, 𝒟𝑡𝑟𝑎𝑖𝑛 = {(𝑋1, 𝑇1, Δ1), ..., (𝑋𝑛, 𝑇𝑛, Δ𝑛)}
where (𝑋𝑖, 𝑇𝑖, Δ𝑖)

𝑖.𝑖.𝑑.∼ (𝑋, 𝑇 , Δ), and some test data 𝒟𝑡𝑒𝑠𝑡 = (𝑋∗, 𝑇 ∗, Δ∗) ∼ (𝑋, 𝑇 , Δ).
For regression models the generative template is given by (𝑋, 𝑌 ) t.v.i. 𝒳 ⊆ ℝ𝑝 and 𝑌 ⊆ ℝ.
As with the survival setting, a regression training set is given by {(𝑋1, 𝑌1), ..., (𝑋𝑛, 𝑌𝑛)}
where (𝑋𝑖, 𝑌𝑖)

𝑖.𝑖.𝑑.∼ (𝑋, 𝑌 ) and some test data (𝑋∗, 𝑌 ∗) ∼ (𝑋, 𝑌 ).
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19.1 Representing Pipelines
Before introducing concrete composition and reduction algorithms, this section briefly
demonstrates how these pipelines will be represented in this book.

Pipelines are represented by graphs designed in the following way: all are drawn with opera-
tions progressing sequentially from left to right; graphs are comprised of nodes (or ‘vertices’)
and arrows (or ‘directed edges’); a rounded rectangular node represents a process such as
a function or model fitting/predicting; a (regular) rectangular node represents objects such
as data or hyper-parameters. Output from rounded nodes are sometimes explicitly drawn
but when omitted the output from the node is the input to the next.

These features are demonstrated in ?@fig-car-example. Say 𝑦 = 2 and 𝑎 = 2, then: data is
provided (𝑦 = 2) and passed to the shift function (𝑓(𝑥) = 𝑥+2), the output of this function
(𝑦 = 4) is passed directly to the next (ℎ(𝑥|𝑎) = 𝑥𝑎), this function requires a parameter which
is also input (𝑎 = 2), finally the resulting output is returned (𝑦∗ = 16). Programmatically,
𝑎 = 2 would be a hyper-parameter that is stored and passed to the required function when
the function is called.

This pipeline is represented as a pseudo-algorithm in (alg-car-ex?), though of course is
overly complicated and in practice one would just code (𝑦 + 2)∧𝑎.

Algorithm 6 Example pipeline.
**Input** Data, 𝑦 ∈ ℝ. Parameter, 𝑎 ∈ ℝ.
**Output** Transformed data, 𝑥 ∈ ℝ.

𝑥 ← 𝑦
𝑥 ← 𝑥 + 2
𝑥 ← 𝑥∧𝑎 return 𝑥

19.2 Introduction to Composition
This section introduces composition, defines a taxonomy for describing compositors (Sec-
tion 19.2.1), and provides some motivating examples of composition in survival analysis
(Section 19.2.2).

In the simplest definition, a model (be it mathematical, computational, machine learning,
etc.) is called a composite model if it is built of two or more constituent parts. This can
be simplest defined in terms of objects. Just as objects in the real-world can be combined
in some way, so can mathematical objects. The exact ‘combining’ process (or ‘compositor’)
depends on the specific composition, so too do the inputs and outputs. By example, a
wooden table can be thought of as a composite object (Figure 19.1). The inputs are wood
and nails, the combining process is hammering (assuming the wood is pre-chopped), and the
output is a surface for eating. In mathematics, this process is mirrored. Take the example of a
shifted linear regression model. This is defined by a linear regression model, 𝑓(𝑥) = 𝛽0 +𝑥𝛽1,
a shifting parameter, 𝛼, and a compositor 𝑔(𝑥|𝛼) = 𝑓(𝑥)+𝛼. Mathematically this example is
overly trivial as this could be directly modelled with 𝑓(𝑥) = 𝛼+𝛽0+𝑥𝛽1, but algorithmically
there is a difference. The composite model 𝑔, is defined by first fitting the linear regression
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model, 𝑓 , and then applying a shift, 𝛼; as opposed to fitting a directly shifted model.

Figure 19.1: Visualising composition in the real-world. A table is a composite object built
from nails and wood, which are combined with a hammer ‘compositor’. Figure not to scale.

Why Composition?

Tables tend to be better surfaces for eating your dinner than bundles of wood. Or in mod-
elling terms, it is well-known that ensemble methods (e.g. random forests) will generally
outperform their components (e.g. decision trees). All ensemble methods are composite
models and this demonstrates one of the key use-cases of composition: improved predictive
performance. The second key use-case is reduction, which is fully discussed in Section 19.3.
Section 19.2.2 motivates composition in survival analysis by demonstrating how it is already
prevalent but requires formalisation to make compositions more transparent and accessible.

Composite Model vs. Sub-models

A bundle of wood and nails is not a table and 1, 000 decision trees are not a random forest,
both require a compositor. The compositor in a composite model combines the components
into a single model. Considering a composite model as a single model enables the hyper-
parameters of the compositor and the component model(s) to be efficiently tuned whilst
being evaluated as a single model. This further allows the composite to be compared to
other models, including its own components, which is required to justify complexity instead
of parsimony in model building (?@sec-eval-why-why).

19.2.1 Taxonomy of Compositors
Just as there are an infinite number of ways to make a table, composition can come in
infinite forms. However there are relatively few categories that these can be grouped into.
Two primary taxonomies are identified here. The first is the ‘composition type’ and relates
to the number of objects composed:

[i)] i. Single-Object Composition (SOC) – This form of composition either makes use of
parameters or a transformation to alter a single object. The shifted linear regression model
above is one example of this, another is given in Section 19.4.3. i. Multi-Object Composition
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(MOC) – In contrast, this form of composition combines multiple objects into a single one.
Both examples in Section 19.2.2 are multi-object compositions.

The second grouping is the ‘composition level’ and determines at what ‘level’ the composi-
tion takes place:

[i)] i. Prediction Composition – This applies at the level of predictions; the component
models could be forgotten at this point. Predictions may be combined from multiple models
(MOC) or transformed from a single model (SOC). Both examples in Section 19.2.2 are
prediction compositions. i. Task Composition – This occurs when one task (e.g. regression)
is transformed to one or more others (e.g. classification), therefore always SOC. This is seen
mainly in the context of reduction (Section 19.3). i. Model Composition – This is commonly
seen in the context of wrappers (Section 19.5.1.4), in which one model is contained within
another. i. Data Composition – This is transformation of training/testing data types, which
occurs at the first stage of every pipeline.

19.2.2 Motivation for Composition
Two examples are provided below to demonstrate common uses of composition in survival
analysis and to motivate the compositions introduced in Section 19.4.

Example 1: Cox Proportional Hazards

Common implementations of well-known models can themselves be viewed as composite
models, the Cox PH is the most prominent example in survival analysis. Recall the model
defined by

ℎ(𝜏|𝑋𝑖) = ℎ0(𝜏) exp(𝛽𝑋𝑖)
where ℎ0 is the baseline hazard and 𝛽 are the model coefficients.

This can be seen as a composite model as Cox defines the model in two stages (Cox 1972):
first fitting the 𝛽-coefficients using the partial likelihood and then by suggesting an esti-
mate for the baseline distribution. This first stage produces a linear predictor return type
(Section 4.3) and the second stage returns a survival distribution prediction. Therefore the
Cox model for linear predictions is a single (non-composite) model, however when used to
make distribution predictions then it is a composite. Cox implicitly describes the model
as a composite by writing ‘’alternative simpler procedures would be worth having” (Cox
1972), which implies a decision in fitting (a key feature of composition). This composition
is formalised in Section 19.4.1 as a general pipeline (C1). The Cox model utilises the (C1)
pipeline with a PH form and Kaplan-Meier baseline.

Example 2: Random Survival Forests

Fully discussed in Section 13.1, random survival forests are composed from many individual
decision trees via a prediction composition algorithm ((alg-rsf-pred?)). In general, random
forests perform better than their component decision trees, which tends to be true of all
ensemble methods. Aggregation of predictions in survival analysis requires slightly more
care than other fields due to the multiple prediction types, however this is still possible and
is formalised in Section 19.4.4.
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19.3 Introduction to Reduction
This section introduces reduction, motivates its use in survival analysis (Section 19.3.1),
details an abstract reduction pipeline and defines the difference between a com-
plete/incomplete reduction (Section 19.3.2), and outlines some common mistakes that have
been observed in the literature when applying reduction (Section 19.3.3).

Reduction is a concept found across disciplines with varying definitions. This report uses the
Langford definition: reduction is ‘’a complex problem decomposed into simpler subproblems
so that a solution to the subproblems gives a solution to the complex problem” (Langford
et al. 2016). Generalisation (or induction) is a common real-world use of reduction, for
example sampling a subset of a population in order to estimate population-level results.
The true answer (population-level values) may not always be found in this way but very
good approximations can be made with simpler sub-problems (sub-sampling).

Reductions are workflows that utilise composition. By including hyper-parameters, even
complex reduction strategies can remain relatively flexible. To illustrate reduction by ex-
ample, recall the table-building example (Section 19.2) in which the task of interest is to
acquire a table. The most direct but complex solution is to fell a tree and directly saw it
into a table (Figure 19.2, top), clearly this is not a sensible process. Instead the problem can
be reduced into simpler sub-problems: saw the tree into bundles of wood, acquire nails, and
then use the ‘hammer compositor’ (Figure 19.1) to create a table (Figure 19.2, bottom).

Figure 19.2: Visualising reduction in the real-world. The complex process (top) of directly
sawing a tree into a table is inefficient and unnecessarily complex. The reduction (bottom)
that involves first creating bundles of wood is simpler, more efficient, and yields the same
result, though technically requiring more steps.

In a modelling example, predicting a survival distribution with the Cox model can be viewed
as a reduction in which two sub-problems are solved and composed:

i. predict continuous ranking;
ii. estimate baseline hazard; and
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iii. compose with (C1) (Section 19.4.1).

This is visualised as a reduction strategy in ?@fig-car-cargraph. The entire process from
defining the original problem, to combining the simpler sub-solutions (in green), is the
reduction (in red).

19.3.1 Reduction Motivation
Formalisation of reduction positively impacts upon accessibility, transparency, and predic-
tive performance. Improvements to predictive performance have already been demonstrated
when comparing random forests to decision trees. In addition, a reduction with multi-
ple stages and many hyper-parameters allows for fine tuning for improved transparency
and model performance (usual overfitting caveat applies, as does the trade-off described in
?@sec-car-pipelines-trade).

The survey of ANNs (Section 16.1) demonstrated how reduction is currently utilised with-
out transparency. Many of these ANNs are implicitly reductions to probabilistic classi-
fication (Section 19.5.1.6) however none include details about how the reduction is per-
formed. Furthermore in implementation, none provide interface points to the reduction
hyper-parameters. Formalisation encourages consistent terminology, methodology and trans-
parent implementation, which can only improve model performance by exposing further
hyper-parameters.

Accessibility is improved by formalising specific reduction workflows that previously de-
manded expert knowledge in deriving, building, and running these pipelines. All regression
reductions in this chapter, are implemented in \ mlr3proba (R. Sonabend et al. 2021) and
can be utilised with any possible survival model.

Finally there is an economic and efficiency advantage to reduction. A reduction model is
relatively ‘cheap’ to explore as they utilise pre-established models and components to solve
a new problem. Therefore if a certain degree of predictive ability can be demonstrated from
reduction models, it may not be worth the expense of pursuing more novel ideas and hence
reduction can help direct future research.

19.3.2 Task, Loss, and Data Reduction
Reduction can be categorised into task, loss, and data reduction, often these must be used
in conjunction with each other. The direction of the reductions may be one- or two-way;
this is visualised in ?@fig-car-reduxdiag. This diagram should not be viewed as a strict
fit/predict/evaluation workflow but instead as a guidance for which tasks, 𝑇 , data, 𝐷,
models, 𝑀 , and losses, 𝐿, are required for each other. The subscript 𝑂 refers to the original
object ‘level’ before reduction, whereas the subscript 𝑅 is in reference to the reduced object.

The individual task, model, and data compositions in the diagram are listed below, the
reduction from survival to classification (Section 19.5.1) is utilised as a running example to
help exposition.

• 𝑇𝑂 → 𝑇𝑅: By definition of a machine learning reduction, task reduction will always be
one way. A more complex task, 𝑇𝑂, is reduced to a simpler one, 𝑇𝑅, for solving. 𝑇𝑅 could
also be multiple simpler tasks. For example, solving a survival task, 𝑇𝑂, by classification,
𝑇𝑅 (Section 19.5.1).

• 𝑇𝑅 → 𝑀𝑅: All machine learning tasks have models that are designed to solve them. For
example logistic regression, 𝑀𝑅, for classification tasks, 𝑇𝑅.

https://cran.r-project.org/package=mlr3proba
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• 𝑀𝑅 → 𝑀𝑂: The simpler models, 𝑀𝑅, are used for the express purpose to solve the original
task, 𝑇𝑂, via solving the simpler ones. To solve 𝑇𝑂, a compositor must be applied, which
may transform one (SOC) or multiple models (MOC) at a model- or prediction-level, thus
creating 𝑀𝑂. For example predicting survival probabilities with logistic regression, 𝑀𝑅,
at times 1, ..., 𝜏∗ for some 𝜏∗ ∈ ℕ>0 (Section 19.5.1.4).

• 𝑀𝑂 → 𝑇𝑂: The original task should be solvable by the composite model. For example
predicting a discrete survival distribution by concatenating probabilistic predictions at
the times 1, ..., 𝜏∗ (Section 19.5.1.6).

• 𝐷𝑂 → 𝐷𝑅: Just as the tasks and models are reduced, the data required to fit these must
likewise be reduced. Similarly to task reduction, data reduction can usually only take
place in one direction, to see why this is the case take an example of data reduction by
summaries. If presented with 10 data-points {1, 1, 1, 5, 7, 3, 5, 4, 3, 3} then these could be
reduced to a single point by calculating the sample mean, 3.3. Clearly given only the
number 3.3 there is no strategy to recover the original data. There are very few (if any)
data reduction strategies that allow recovery of the original data. Continuing the running
example, survival data, 𝐷𝑂, can be binned (Section 19.5.1.1) to classification data, 𝐷𝑅.

There is no arrow between 𝐷𝑂 and 𝑀𝑂 as the composite model is never fit directly, only
via composition from 𝑀𝑅 → 𝑀𝑂. However, the original data, 𝐷𝑂, is required when evalu-
ating the composite model against the respective loss, 𝐿𝑂.1 Reduction should be directly
comparable to non-reduction models, hence this diagram does not include loss reduction
and instead insists that all models are compared against the same loss 𝐿𝑂.

A reduction is said to be complete if there is a full pipeline from 𝑇𝑂 → 𝑀𝑂 and the original
task is solved, otherwise it is incomplete. The simplest complete reduction is comprised of
the pipeline 𝑇𝑂 → 𝑇𝑅 → 𝑀𝑅 → 𝑀𝑂. Usually this is not sufficient on its own as the reduced
models are fit on the reduced data, 𝐷𝑅 → 𝑀𝑅.

A complete reduction can be specified by detailing:

i. the original task and the sub-task(s) to be solved, 𝑇𝑂 → 𝑇𝑅;
ii. the original dataset and the transformation to the reduced one, 𝐷𝑂 → 𝐷𝑅 (if

required); and
iii. the composition from the simpler model to the complex one, 𝑀𝑅 → 𝑀𝑂.

19.3.3 Common Mistakes in Implementation of Reduction
In surveying models and measures, several common mistakes in the implementation of reduc-
tion and composition were found to be particularly prevalent and problematic throughout
the literature. It is assumed that these are indeed mistakes (not deliberate) and result from
a lack of prior formalisation. These mistakes were even identified 20 years ago (Schwarzer,
Vach, and Schumacher 2010) but are provided in more detail in order to highlight their
current prevalence and why they cannot be ignored.

RM1. Incomplete reduction. This occurs when a reduction workflow is presented as if it
solves the original task but fails to do so and only the reduction strategy is solved. A
common example is claiming to solve the survival task by using binary classification, e.g. er-
roneously claiming that a model predicts survival probabilities (which implies distribution)
when it actually predicts a five year probability of death ((box-task-classif?)). This is a

1A complete diagram would indicate that 𝐷𝑂 is split into training data, which is subsequently reduced,
and test data, which is passed to 𝐿𝑂. All reductions in this section can be applied to any data splitting
process.
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mistake as it misleads readers into believing that the model solves a survival task ((box-
task-surv?)) when it does not. This is usually a semantic not mathematical error and
results from misuse of terminology. It is important to be clear about model predict types
(Section 4.3) and general terms such as ‘survival predictions’ should be avoided unless they
refer to one of the three prediction tasks. RM2. Inappropriate comparisons. This is a direct
consequence of (RM1) and the two are often seen together. (RM2) occurs when an incom-
plete reduction is directly compared to a survival model (or complete reduction model) using
a measure appropriate for the reduction. This may lead to a reduction model appearing er-
roneously superior. For example, comparing a logistic regression to a random survival forest
(RSF) (Section 13.1) for predicting survival probabilities at a single time using the accuracy
measure is an unfair comparison as the RSF is optimised for distribution predictions. This
would be non-problematic if a suitable composition is clearly utilised. For example a regres-
sion SSVM predicting survival time cannot be directly compared to a Cox PH. However
the SSVM can be compared to a CPH composed with the probabilistic to deterministic
compositor (C3), then conclusions can be drawn about comparison to the composite sur-
vival time Cox model (and not simply a Cox PH). RM3. Na”ive censoring deletion. This
common mistake occurs when trying to reduce survival to regression or classification by
simply deleting all censored observations, even if censoring is informative. This is a mistake
as it creates bias in the dataset, which can be substantial if the proportion of censoring
is high and informative. More robust deletion methods are described in Chapter 23. RM4.
Oversampling uncensored observations. This is often seen when trying to reduce survival
to regression or classification, and often alongside (RM3). Oversampling is the process of
replicating observations to artificially inflate the sample size of the data. Whilst this process
does not create any new information, it can help a model detect important features in the
data. However, by only oversampling uncensored observations, this creates a source of bias
in the data and ignores the potentially informative information provided by the proportion
of censoring.

19.4 Composition Strategies for Survival Analysis
Though composition is common practice in survival analysis, with the Cox model being a
prominent example, a lack of formalisation means a lack of consensus in simple operations.
For example, it is often asked in survival analysis how a model predicting a survival distri-
bution can be used to return a survival time prediction. A common strategy is to define
the survival time prediction as the median of the predicted survival curve however there
is no clear reason why this should be more sensible than returning the distribution mean,
mode, or some random quantile. Formalisation allow these choices to be analytically com-
pared both theoretically and practically as hyper-parameters in a workflow. Four prediction
compositions are discussed in this section ((tab-car-taxredcar?)), three are utilised to
convert prediction types between one another, the fourth is for aggregating multiple predic-
tions. One data composition is discussed for converting survival to regression data. Each
is first graphically represented and then the components are discussed in detail. As with
losses in the previous chapter, compositions are discussed at an individual observation level
but extend trivially to multiple observations.
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Table 19.1: Compositions formalised in Section 19.4.

ID1 Composition Type2 Level3

C1) Linear predictor to distribution MOC Prediction
C2) Survival time to distribution MOC Prediction
C3) Distribution to survival time SOC Prediction
C4) Survival model averaging MOC Prediction
C5) Survival to regression SOC Data

1. ID for reference throughout this book. 2. Composition type. Multi-object composition
(MOC) or single-object composition (SOC). 3. Composition level.

19.4.1 C1) Linear Predictor → Distribution
This is a prediction-level MOC that composes a survival distribution from a predicted linear
predictor and estimated baseline survival distribution. The composition (?@fig-car-comp-
distr) requires:

• ̂𝜂: Predicted linear predictor. ̂𝜂 can be tuned by including this composition multiple times
in a benchmark experiment with different models predicting ̂𝜂. In theory any continuous
ranking could be utilised instead of a linear predictor though results may be less sensible
(?@sec-car-pipelines-trade).

• ̂𝑆0: Estimated baseline survival function. This is usually estimated by the Kaplan-Meier
estimator fit on training data, ̂𝑆𝐾𝑀 . However any model that can predict a survival
distribution can estimate the baseline distribution (caveat: see ?@sec-car-pipelines-
trade) by taking a uniform mixture of the predicted individual distributions: say 𝜉1, ..., 𝜉𝑚
are m predicted distributions, then ̂𝑆0(𝜏) = 1

𝑚 ∑𝑚
𝑖=1 𝜉𝑖.𝑆(𝜏). The mixture is required as

the baseline must be the same for all observations. Alternatively, parametric distributions
can be assumed for the baseline, e.g. 𝜉 = Exp(2) and 𝜉.𝑆(𝑡) = exp(−2𝑡). As with ̂𝜂, this
parameter is also tunable.

• 𝑀 : Chosen model form, which theoretically can be any non-increasing right-continuous
function but is usually one of:

• Proportional Hazards (PH): 𝑆𝑃𝐻(𝜏|𝜂, 𝑆0) = 𝑆0(𝜏)exp(𝜂)

• Accelerated Failure Time (AFT): 𝑆𝐴𝐹𝑇 (𝜏|𝜂, 𝑆0) = 𝑆0( 𝜏
exp(𝜂) )

• Proportional Odds (PO): 𝑆𝑃𝑂(𝜏|𝜂, 𝑆0) = 𝑆0(𝜏)
exp(−𝜂)+(1−exp(−𝜂))𝑆0(𝜏)

Models that predict linear predictors will make assumptions about the model form and
therefore dictate sensible choices of 𝑀 , for example the Cox model assumes a PH form.
This does not mean other choices of 𝑀 cannot be specified but that interpretation may be
more difficult (?@sec-car-pipelines-trade). The model form can be treated as a hyper-
parameter to tune. * 𝐶: Compositor returning the composed distribution, 𝜁 ∶= 𝐶(𝑀, ̂𝜂, ̂𝑆0)
where 𝜁 has survival function 𝜁.𝑆(𝜏) = 𝑀(𝜏| ̂𝜂, ̂𝑆0).
Pseudo-code for training ((alg-car-comp-distr-fit?)) and predicting ((alg-car-comp-
distr-pred?)) this composition as a model ‘wrapper’ with sensible parameter choices
(?@sec-car-pipelines-trade) is provided in appendix (app-car?).
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19.4.2 C2) Survival Time → Distribution
This is a prediction-level MOC that composes a distribution from a predicted survival time
and assumed location-scale distribution. The composition (?@fig-car-comp-response) re-
quires:

• ̂𝑇 : A predicted survival time. As with the previous composition, this is tunable. In theory
any continuous ranking could replace ̂𝑇 , though the resulting distribution may not be
sensible (?@sec-car-pipelines-trade).

• 𝜉: A specified location-scale distribution, 𝜉(𝜇, 𝜎), e.g. Normal distribution.
• 𝜎̂: Estimated scale parameter for the distribution. This can be treated as a hyper-

parameter or predicted by another model.
• 𝐶: Compositor returning the composed distribution 𝜁 ∶= 𝐶(𝜉, ̂𝑇 , 𝜎̂) = 𝜉( ̂𝑇 , 𝜎̂).
Pseudo-code for training ((alg-car-comp-response-fit?)) and predicting ((alg-car-
comp-response-pred?)) this composition as a model ‘wrapper’ with sensible parameter
choices (?@sec-car-pipelines-trade) is provided in appendix (app-car?).

19.4.3 C3) Distribution → Survival Time Composition
This is a prediction-level SOC that composes a survival time from a predicted distribution.
Any paper that evaluates a distribution on concordance is implicitly using this composition
in some manner. Not acknowledging the composition leads to unfair model comparison
(Section 19.3.3). The composition (?@fig-car-comp-crank) requires:

• 𝜁: A predicted survival distribution, which again is ‘tunable’.
• 𝜙: A distribution summary method. Common examples include the mean, median and

mode. Other alternatives include distribution quantiles, 𝜁.𝐹 −1(𝛼),\𝛼 ∈ [0, 1]; 𝛼 could be
tuned as a hyper-parameter.

• 𝐶: Compositor returning composed survival time predictions, ̂𝑇 ∶= 𝐶(𝜙, 𝜁) = 𝜙(𝜁).
Pseudo-code for training ((alg-car-comp-crank-fit?)) and predicting ((alg-car-comp-
crank-pred?)) this composition as a model ‘wrapper’ with sensible parameter choices
(?@sec-car-pipelines-trade) is provided in appendix (app-car?).

19.4.4 C4) Survival Model Averaging
Ensembling is likely the most common composition in machine learning. In survival it is
complicated slightly as multiple prediction types means one of two possible compositions is
utilised to average predictions. The (?@fig-car-comp-avg) composition requires:

• 𝜌 = 𝜌1, ..., 𝜌𝐵: 𝐵 predictions (not necessarily from the same model) of the same type:
ranking, survival time or distribution; again ‘tunable’.

• 𝑤 = 𝑤1, ..., 𝑤𝐵: Weights that sum to one.
• 𝐶: Compositor returning combined predictions, ̂𝜌 ∶= 𝐶(𝜌, 𝑤) where 𝐶(𝜌, 𝑤) =

1
𝐵 ∑𝐵

𝑖=1 𝑤𝑖𝜌𝑖, if 𝜌 are ranking of survival time predictions; or 𝐶(𝜌, 𝑤) = 𝜁 where 𝜁 is
the distribution defined by the survival function 𝜁.𝑆(𝜏) = 1

𝐵 ∑𝐵
𝑖=1 𝑤𝑖𝜌𝑖.𝑆(𝜏), if 𝜌 are

distribution predictions.

Pseudo-code for training ((alg-car-comp-avg-fit?)) and predicting ((alg-car-comp-avg-
pred?)) this composition as a model ‘wrapper’ with sensible parameter choices (?@sec-
car-pipelines-trade) is provided in appendix (app-car?).
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19.5 Novel Survival Reductions
This section collects the various strategies and settings discussed previously into complete
reduction workflows. (tab-car-reduxes?) lists the reductions discussed in this section with
IDs for future reference. All strategies are described by visualising a graphical pipeline and
then listing the composition steps required in fitting and predicting.

This section only includes novel reduction strategies and does not provide a survey of
pre-existing strategies. This limitation is primarily due to time (and page) constraints as
every method has very distinct workflows that require complex exposition. Well-established
strategies are briefly mentioned below and future research is planned to survey and compare
all strategies with respect to empirical performance (i.e. in benchmark experiments).

Two prominent reductions are ‘landmarking’ (Van Houwelingen 2007) and piecewise expo-
nential models (M. Friedman 1982). Both are reductions for time-varying covariates and
hence outside the scope of this book. Relevant to this book scope is a large class of strate-
gies that utilise ‘discrete time survival analysis’ (Tutz and Schmid 2016); these strategies
include reductions (R7) and (R8). Methodology for discrete time survival analysis has been
seen in the literature for the past three decades (Liestol, Andersen, and Andersen 1994).
The primary reduction strategy for discrete time survival analysis is implemented in the R
package discSurv (Welchowski and Schmid 2019); this is very similar to (R7) except that
it enforces stricter constraints in the composition procedures and forces a ‘discrete-hazard’
instead of ‘discrete-survival’ representation (Section 19.5.1.2).

19.5.1 R7-R8) Survival → Probabilistic Classification
Two separate reductions are presented in ?@fig-car-R7R8 however as both are reductions
to probabilistic classification and are only different in the very last step, both are presented
in this section. Steps and compositions of the reduction (?@fig-car-R7R8):

Fit F1) A survival dataset, 𝒟𝑡𝑟𝑎𝑖𝑛, is binned, 𝐵, with a continuous to discrete data com-
position (Section 19.5.1.1). F2) A multi-label classification model, with adaptations for
censoring, 𝑔𝐿(𝐷𝐵|𝜃), is fit on the transformed dataset, 𝐷𝐵. Optionally, 𝑔𝐿 could be fur-
ther reduced to binary, 𝑔𝐵, or multi-class classification, 𝑔𝑐, (Section 19.5.1.4). Predict P1)
Testing survival data, 𝒟𝑡𝑒𝑠𝑡, is passed to the trained classification model, ̂𝑔, to predict
pseudo-survival probabilities ̃𝑆 (or optionally hazards (Section 19.5.1.2)). P2a) Predictions
can be composed, 𝑇1, into a survival distribution prediction, 𝜁 = 𝜁1, ..., 𝜁𝑚 (Section 19.5.1.6);
or, P2b) Predictions can be composed, 𝑇2, to survival time predictions, ̂𝑇 = ̂𝑇1, ..., ̂𝑇𝑚 (Sec-
tion 19.5.1.7).

Further details for binning, multi-label classification, and transformation of pseudo-survival
probabilities are now provided.

19.5.1.1 Composition: Binning Survival Times

An essential part of the reduction is the transformation from a survival dataset to a classi-
fication dataset, which requires two separate compositions. The first (discussed here) is to
discretise the survival times (𝐵(𝒟𝑡𝑟𝑎𝑖𝑛|𝑤) in ?@fig-car-R7R8) and the second is to merge
the survival time and censoring indicator into a single outcome (Section 19.5.1.2).

Discretising survival times is achieved by the common ‘binning’ composition, in which a con-

https://cran.r-project.org/package=discSurv


142 Reductions

tinuous outcome is discretised into ‘bins’ according to specified thresholds. These thresholds
are usually determined by specifying the width of the bins as a hyper-parameter 𝑤.2 This is
a common transformation and therefore further discussion is not provided here. An example
is given below with the original survival data on the left and the binned data on the right
(𝑤 = 1).

X Time (Cont.) Died
1 1.56 0
2 2 1
3 3.3 1
4 3.6 0
5 4 0

X Time (Disc.) Died
1 [1, 2) 0
2 [2, 3) 1
3 [3, 4) 1
4 [3, 4) 0
5 [4, 5) 0

19.5.1.2 Composition: Survival to Classification Outcome

The binned dataset still has the unique survival data format of utilising two outcomes for
training (time and status) but only making a prediction for one outcome (distribution). In
order for this to be compatible with classification, the two outcome variables are composed
into a single variable.3 This is achieved by casting the survival times into a ‘wide’ format
and creating a new outcome indicator.4 Two outcome transformations are possible, the first
represents a discrete survival function and the second represents a discrete hazard function.5

Discrete Survival Function Composition

In this composition, the data in the transformed dataset represents the discrete survival
function. The new indicator is defined as follows,

𝑌𝑖;𝜏 ∶=
⎧{
⎨{⎩

1, 𝑇𝑖 > 𝜏
0, 𝑇𝑖 ≤ 𝜏 ∩ Δ𝑖 = 1
−1, 𝑇𝑖 ≤ 𝜏 ∩ Δ𝑖 = 0

At a given discrete time 𝜏 , an observation, 𝑖, is either alive (𝑌𝑖;𝜏 = 1), dead (𝑌𝑖;𝜏 = 0), or
censored (𝑌𝑖;𝜏 = −1). Therefore ̂𝑃 (𝑌𝑖;𝜏 = 1) = ̂𝑆𝑖(𝜏), motivating this particular choice of
representation.

2Binning is described here with equal widths but generalises to unequal widths trivially.
3This is the first key divergence from other discrete-time classification strategies, which use the censoring

indicator as the outcome and the time outcome as a feature.
4This is the second key divergence from other discrete-time classification strategies, which keep the data

in a ’long’ format.
5This is the final key divergence from other discrete-time classification strategies, which enforce the

discrete hazard representation.
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This composition is demonstrated below with the binned data (left) and the composed
classification data (right).

X Time (Disc.) Died
1 [1, 2) 0
2 [2, 3) 1
3 [3, 4) 1
4 [3, 4) 0
5 [4, 5) 0

X [1,2) [2,3) [3,4) [4,5)
1 -1 -1 -1 -1
2 1 0 0 0
3 1 1 0 0
4 1 1 -1 -1
5 1 1 -1 -1

Discrete Hazard Function Composition

In this composition, the data in the transformed dataset represents the discrete hazard
function. The new indicator is defined as follows,

𝑌 ∗
𝑖;𝜏 ∶=

⎧{
⎨{⎩

1, 𝑇𝑖 = 𝜏 ∩ Δ𝑖 = 1
−1, 𝑇𝑖 = 𝜏 ∩ Δ𝑖 = 0
0, otherwise

At a given discrete time 𝜏 , an observation, 𝑖, either experiences the event (𝑌 ∗
𝑖;𝜏 = 1), expe-

riences censoring (𝑌𝑖;𝜏 = −1), or neither (𝑌𝑖;𝜏 = 0). Utilising sequential multi-label classi-
fication problem transformation methods (Section 19.5.1.4) results in ̂𝑃 (𝑌 ∗

𝑖;𝜏 = 1) = ℎ̂𝑖(𝜏).
If methods are utilised that do not ‘look back’ at predictions then ̂𝑃 (𝑌 ∗

𝑖;𝜏 = 1) = ̂𝑝𝑖(𝜏)
(Section 19.5.1.4).6

This composition is demonstrated below with the binned data (left) and the composed
classification data (right).

X Time (Disc.) Died
1 [1, 2) 0
2 [2, 3) 1
3 [3, 4) 1
4 [3, 4) 0
5 [4, 5) 0

6This important distinction is not required in other discrete-time reduction strategies that automatically
condition the prediction by including time as a feature.
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X [1,2) [2,3) [3,4) [4,5)
1 -1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 -1 0
5 0 0 0 -1

Multi-Label Classification Data

In both compositions, survival data t.v.i. ℝ𝑝 × ℝ≥0 × {0, 1} is transformed to multi-label
classification data t.v.i. ℝ𝑝 × {−1, 0, 1}𝐾 for 𝐾 binned time-intervals. The multi-label clas-
sification task is defined in Section 19.5.1.4 with possible algorithms.

The discrete survival representation has a slightly more natural interpretation and is ‘easier’
for classifiers to use for training as there are more positive events (i.e. more observations
alive) to train on, whereas the discrete hazard representation will have relatively few events
in each time-point. However the hazard representation leads to more natural predictions
(Section 19.5.1.6).

A particular bias that may easily result from the composition of survival to classification
data is now discussed.

19.5.1.3 Reduction to Classification Bias

The reduction to classification bias is commonly known (Zhou et al. 2005) but is reiterated
briefly here as it must be accounted for in any automated reduction to classification workflow.
This bias occurs when making classification predictions about survival at a given time and
incorrectly censoring patients who have not been observed long enough, instead of removing
them.

By example, say the prediction of interest is five-year survival probabilities after a particular
diagnosis, clearly a patient who has only been diagnosed for three years cannot inform this
prediction. The bias is introduced if this patient is censored at five-years instead of being
removed from the dataset. The result of this bias is to artificially inflate the probability of
survival at each time-point as an unknown outcome is treated as censored and therefore
alive.

This bias is simply dealt with by removing patients who have not been alive ‘long enough’.7
Paradoxically, even if a patient is observed to die before the time-point of interest, they
should still be removed if they have not been in the dataset ‘long enough’ as failing to do
so will result in a bias in the opposite direction, thus over-inflating the proportion of dead
observations.

Accounting for this bias is particularly important in the multi-label reduction as the number
of observable patients will decrease over time due to censoring.

19.5.1.4 Multi-Label Classification Algorithms

As the work in this section is completely out of the book scope, the full text is in appendix
(app-mlc?). The most important contributions from this section are:

7Accounting for this bias is only possible if the study start and end dates are known, as well as the date
the patient entered the study.
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• Reviewing problem transformation methods (Tsoumakas and Katakis 2007) for multi-label
classification;

• Identifying that only binary relevance, nested stacking, and classifier chains are appropri-
ate in this reduction; and

• Generalising these methods into a single wrapper for any binary classifier, the ‘LWrapper’.

19.5.1.5 Censoring in Classification

Classification algorithms cannot natively handle the censoring that is included in the sur-
vival reduction, but this can be incorporated using one of two approaches.

Multi-Class Classification

All multi-label datasets can also handle multi-class data, hence the simplest way in which
to handle censoring is to make multi-class predictions in each label for the outcome
𝑌𝜏 𝑡.𝑣.𝑖.{−1, 0, 1}. Many off-shelf classification learners can make multi-class predictions na-
tively and simple reductions exist for those that cannot. As a disadvantage to this method,
classifiers would then predict if an individual is dead or alive or censored (each mutually
exclusive), and not simply alive or dead. Though this could be perceived as an advantage
when censoring is informative as this will accurately reflect a real-world competing-risks
set-up.

Subsetting/Hurdle Models

For this approach, the multi-class task is reduced to two binary class tasks: first predict if
a subject is censored or not (dead or alive) and only if the prediction for censoring is below
some threshold, 𝛼 ∈ [0, 1], then predict if the subject is alive or not (dead or censored). If
the probability of censoring is high in the first task then the probability of being alive is
automatically set to zero in the final prediction, otherwise the prediction from the second
task is used. Any classifier can utilise this approach and it has a meaningful interpretation,
additionally 𝛼 is a tunable hyper-parameter. The main disadvantage is increases to storage
and run-time requirements as double the number of models may be fit.

Once the datasets have been composed to classification datasets and censoring is suitably
incorporated by either approach, then any probabilistic classification model can be fit on
the data. Predictions from these models can either be composed to a distribution prediction
(R7) or a survival time prediction (R8).

19.5.1.6 R7) Probabilistic Survival → Probabilistic Classification

This final part of the (R7) reduction is described separately for discrete hazard and survival
representations of the data (Section 19.5.1.2).

Discrete Hazard Representation

In this representation recall that predictions of the positive class, 𝑃(𝑌𝜏 = 1), are estimating
the quantity ℎ(𝜏). These predictions provide a natural and efficient transformation from
predicted hazards to survival probabilities. Let ℎ̂𝑖 be a predicted hazard function for some
observation 𝑖, then the survival function for that observation can be found with a Kaplan-
Meier type estimator,

̃𝑆𝑖(𝜏∗) = ∏
𝜏

1 − ℎ̂𝑖(𝜏)

Now predictions are for a pseudo-survival function, which is ‘pseudo’ as it is not right-
continuous. Resolving this is discussed below.
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Discrete Survival Representation

In this representation, 𝑃(𝑌𝜏 = 1) is estimating 𝑆(𝜏), which means that predictions from a
classification model result in discrete point predictions and not a right-continuous function.
More importantly, there is no guarantee that a non-increasing function will be predicted,
i.e. there is no guarantee that 𝑃(𝑌𝑗 = 1) < 𝑃(𝑌𝑖 = 1), for time-points 𝑗 > 𝑖.
Unfortunately there is no optimal way of dealing with predictions of this sort and ‘mistakes’
of this kind have been observed in some software implementation. One point to note is that
in practice these are quite rare as the probability of survival will always decrease over time.
Therefore the ‘usual’ approach is quite ‘hacky’ and involves imputing increasing predictions
with the previous prediction, formally,

̃𝑆(𝑖 + 1) ∶= min{𝑃(𝑌𝑖+1 = 1), 𝑃 (𝑌𝑖 = 1)}, ∀𝑖 = ℝ≥0

assuming ̃𝑆(0) = 1. Future research should seek more robust alternatives.

Right-Continuous Survival Function

From either representation, a \ non-increasing but non-continuous pseudo-survival function,
̃𝑆, is now predicted. Creating a right-continuous function (‘𝑇1( ̃𝑆)’ in ?@fig-car-R7) from

these point predictions (Figure 19.3 (a)) is relatively simple and well-known with accessi-
ble off-shelf software. At the very least, one can assume a constant hazard rate between
predictions and cast them into a step function (Figure 19.3 (b)). This is a fairly common
assumption and is usually valid as bin-width decreases. Alternatively, the point predic-
tions can be smoothed into a continuous function with off-shelf software, for example with
polynomial local regression smoothing (Figure 19.3 (c)) or generalised linear smoothing
(Figure 19.3 (d)). Whichever method is chosen, the survival function is now non-increasing
right-continuous and the (R7) reduction is complete.

19.5.1.7 R8) Deterministic Survival → Probabilistic Classification

Predicting a deterministic survival time from the multi-label classification predictions is
relatively straightforward and can be viewed as a discrete analogue to (C3) (Section 19.4.3).
For the discrete hazard representation, one can simply take the predicted time-point for
an individual to be time at which the predicted hazard probability is highest however this
could easily be problematic as there may be multiple time-points at which the predicted
hazard equals 1. Instead it is cleaner to first cast the hazard to a pseudo-survival probability
(Section 19.5.1.6) and then treat both representations the same.

Let ̃𝑆𝑖 be the predicted multi-label survival probabilities for an observation 𝑖 such that ̃𝑆𝑖(𝜏)
corresponds with ̂𝑃 (𝑌𝑖;𝜏 = 1) for label 𝜏 ∈ 𝒦 where 𝑌𝑖;𝜏 is defined in Section 19.5.1.2 and
𝒦 = {1, ..., 𝐾} is the set of labels for which to make predictions. Then the survival time
transformation is defined by

𝑇2( ̃𝑆𝑖) = inf{𝜏 ∈ 𝒦 ∶ ̃𝑆𝑖(𝜏) ≤ 𝛽}
for some 𝛽 ∈ [0, 1].
This is interpreted as defining the predicted survival time as the first time-point in which
the predicted probability of being alive drops below a certain threshold 𝛽. Usually 𝛽 =
0.5, though this can be treated as a hyper-parameter for tuning. This composition can
be utilised even if predictions are not non-increasing, as only the first time the predicted
survival probability drops below the threshold is considered. With this composition the (R8)
reduction is now complete.



Novel Survival Reductions 147

(a) Point Predictions (b) Survival Step Function

(c) Local polynomial regression smoothing (d) Generalised linear smoothing

Figure 19.3: Survival function as a: point prediction (a), step function assuming constant
risk (b), local polynomial regression smoothing (c), and generalised linear smoothing (d).
(c) and (d) computed with ggplot2 (Wickham 2016).

https://cran.r-project.org/package=ggplot2
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19.6 Conclusions
This chapter introduced composition and reduction to survival analysis and formalised spe-
cific strategies. Formalising these concepts allows for better quality of research and most
importantly improved transparency. Clear interface points for hyper-parameters and com-
positions allow for reproducibility that was previously obfuscated by unclear workflows and
imprecise documentation for pipelines.

Additionally, composition and reduction improves accessibility. Reduction workflows vastly
increase the number of machine learning models that can be utilised in survival analysis,
thus opening the field to those whose experience is limited to regression or classification.
Formalisation of workflows allows for precise implementation of model-agnostic pipelines
as computational objects, as opposed to functions that are built directly into an algorithm
without external interface points.

Finally, predictive performance is also increased by these methods, which is most promi-
nently the case for the survival model averaging compositor (C4) (as demonstrated by
RSFs).

All compositions in this chapter, as well as (R1)-(R6), have been implemented in mlr3proba
with the mlr3pipelines (M. Binder et al. 2019) interface. The reductions to classification
will be implemented in a near-future update. Additionally the discSurv package (Wel-
chowski and Schmid 2019) will be interfaced as a mlr3proba pipeline to incorporate further
discrete-time strategies.

The compositions (C1) and (C3) are included in the benchmark experiment in R. E. B.
Sonabend (2021) so that every tested model can make probabilistic survival distribution
predictions as well as deterministic survival time predictions. Future research will benchmark
all the pipelines in this chapter and will cover algorithm and model selection, tuning, and
comparison of performance. Strategies from other papers will also be explored.

https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3pipelines
https://cran.r-project.org/package=discSurv
https://cran.r-project.org/package=mlr3proba
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23
Connections to Regression and
Imputation

TODO (150-200 WORDS)

Major changes expected!

This page is a work in progress and major changes will be made over time.

TODO

• I think all these sections should have examples in implemented models, e.g., here we can
point to SVM models and some neural nets

• We can also point to neural nets that use reduction to essentially just predict the linear
predictor via regression or to use pseudovalues

• Add pseudovalues
• Add prediction of the observed outcome (not survival) time

This is a data-level SOC that transforms survival data to regression data by either remov-
ing censored observations or ‘imputing’ survival times. This composition is frequently in-
correctly utilised (Section 19.3.3) and therefore more detail is provided here than previous
compositions. Note that the previous compositions were prediction-level transformations
that occur after a survival model makes a prediction, whereas this composition is on a
data-level and can take place before model training or predicting.

In Statistics, there are only two methods for removing ‘missing’ values: deletion and impu-
tation; both of these have been attempted for censoring.

Censoring can be beneficial, harmful, or neutral; each will affect the data differently if
deleted or imputed. Harmful censoring occurs if the reason for censoring is negative, for
example drop-out due to disease progression. Harmful censoring indicates that the true
survival time is likely soon after the censoring time. Beneficial censoring occurs if censoring
is positive, for example drop-out due to recovery. This indicates that the true survival time
is likely far from the censoring time. Finally neutral censoring occurs when no information
can be gained about the true survival time from the censoring time. Whilst the first two of
these can be considered to be dependent on the outcome, neutral censoring is often the case
when censoring is independent of the outcome conditional on the data, which is a standard
assumption for the majority of survival models and measures.
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23.0.0.1 Deletion #{sec-redux-regr-del}

Deletion is the process of removing observations from a dataset. This is usually seen in
‘complete case analysis’ in which observations with ‘missingness’, covariates with missing
values, are removed from the dataset. In survival analysis this method is somewhat riskier
as the subjects to delete depend on the outcome and not the features. Three methods are
considered, the first two are a more brute-force approach whereas the third allows for some
flexibility and tuning.

Complete Deletion

Deleting all censored observations is simple to implement with no computational overhead.
Complete deletion results in a smaller regression dataset, which may be significantly smaller
if the proportion of censoring is high. If censoring is uninformative, the dataset is suitably
large and the proportion of censoring suitably low, then this method can be applied without
further consideration. However if censoring is informative then deletion will add bias to
the dataset, although the ‘direction’ of bias cannot be known in advance. If censoring is
harmful then censored observations will likely have a similar profile to those that died, thus
removing censoring will artificially inflate the proportion of those who survive. Conversely if
censoring is beneficial then censored observations may be more similar to those who survive,
thus removal will artificially inflate the proportion of those who die.

Omission

Omission is the process of omitting the censoring indicator from the dataset, thus resulting in
a regression dataset that assumes all observations experienced the event. Complete deletion
results in a smaller dataset of dead patients, omission results in no sample size reduction but
the outcome may be incorrect. This reduction strategy is likely only justified for harmful
censoring. In this case the true survival time is likely close to the censoring time and therefore
treating censored observations as dead may be a fair assumption.

IPCW

If censoring is conditionally-outcome independent then deletion of censored events is possible
by using Inverse Probability of Censoring Weights (IPCW). This method has been seen
several times throughout this book in the context of models and measures. It has been
formalised as a composition technique by Vock et al. (2016) (Vock et al. 2016) although
their method is limited to binary classification. Their method weights the survival time
of uncensored observations by 𝑤𝑖 = 1/ ̂𝐺𝐾𝑀(𝑇𝑖) and deletes censored observations, where

̂𝐺𝐾𝑀 is the Kaplan-Meier estimate of the censoring distribution fit on training data. As
previously discussed, one could instead consider the Akritas (or any other) estimator for

̂𝐺𝐾𝑀 .

Whilst this method does provide a ‘safer’ way to delete censored observations, there is not
a necessity to do so. Instead consider the following weights

𝑤𝑖 = Δ𝑖 + 𝛼(1 − Δ𝑖)
̂𝐺𝐾𝑀(𝑇𝑖)

(23.1)

where 𝛼 ∈ [0, 1] is a hyper-parameter to tune. Setting 𝛼 = 1 equally weights censored
and uncensored observations and setting 𝛼 = 0 recovers the setting in which censored
observations are deleted. It is assumed ̂𝐺𝐾𝑀 is set to some very small 𝜖 when ̂𝐺𝐾𝑀(𝑇𝑖) = 0.
When 𝛼 ≠ 0 this becomes an imputation method, other imputation methods are now
discussed.
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23.0.0.2 Imputation

Imputation methods estimate the values of missing data conditional on non-missing data and
other covariates. Whilst the true value of the missing data can never be known, by carefully
conditioning on the ‘correct’ covariates, good estimates for the missing value can be obtained
to help prevent a loss of data. Imputing outcome data is more difficult than imputing
covariate data as models are then trained on ‘fake’ data. However a poor imputation should
still be clear when evaluating a model as testing data remains un-imputed. By imputing
censoring times with estimated survival times, the censoring indicator can be removed and
the dataset becomes a regression dataset.

Gamma Imputation

Gamma imputation (D. Jackson et al. 2014) incorporates information about whether cen-
soring is harmful, beneficial, or neutral. The method imputes survival times by generating
times from a shifted proportional hazards model

ℎ(𝜏) = ℎ0(𝜏) exp(𝜂 + 𝛾)

where 𝜂 is the usual linear predictor and 𝛾 ∈ ℝ is a hyper-parameter determining the ‘type’ of
censoring such that 𝛾 > 0 indicates harmful censoring, 𝛾 < 0 indicates beneficial censoring,
and 𝛾 = 0 is neutral censoring. This imputation method has the benefit of being tunable as
𝛾 is a hyper-parameter and there is a choice of variables to condition the imputation. No
independent experiments exist studying how well this method performs, nor discussing the
theoretical properties of the method.

MRL

The Mean Residual Lifetime (MRL) estimator has been previously discussed in the context
of SVMs (Section 14.0.2). Here the estimator is extended to serve as an imputation method.
Recall the MRL function, 𝑀𝑅𝐿(𝜏| ̂𝑆) = ∫∞

𝜏
̂𝑆(𝑢) 𝑑𝑢/ ̂𝑆(𝜏), where ̂𝑆 is an estimate of the

survival function of the underlying survival distribution (e.g. ̂𝑆𝐾𝑀). The MRL is interpreted
as the expected remaining survival time after the time-point 𝜏 . This serves as a natural
imputation strategy where given the survival outcome (𝑇𝑖, Δ𝑖), the new imputed time 𝑇 ′

𝑖 is
given by

𝑇 ′
𝑖 = 𝑇𝑖 + (1 − Δ𝑖)𝑀𝑅𝐿(𝑇𝑖| ̂𝑆)

where ̂𝑆 would be fit on the training data and could be an unconditional estimator, such as
Kaplan-Meier, or conditional, such as Akritas. The resulting survival times are interpreted
as the true times for those who died and the expected survival times for those who were
censored.

Buckley-James

Buckley-James (Buckley and James 1979) is another imputation method discussed earlier
(Section 15.1). The Buckley-James method uses an iterative procedure to impute censored
survival times by the conditional expectation given censoring times and covariates (Z. Wang
and Wang 2010). Given the survival tuple for an outcome (𝑇𝑖, Δ𝑖), the new imputed time
𝑇 ′

𝑖 is

𝑇 ′
𝑖 = {𝑇𝑖, Δ𝑖 = 1

𝑋𝑖 ̂𝛽 + 1
̂𝑆𝐾𝑀(𝑒𝑖) ∑𝑒𝑖<𝑒𝑘

̂𝑝𝐾𝑀(𝑒𝑘)𝑒𝑘 Δ𝑖 = 0
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where ̂𝑆𝐾𝑀 is the Kaplan-Meier estimator of the survival distribution estimated on training
data and with associated pmf ̂𝑝𝐾𝑀 and 𝑒𝑖 = 𝑇𝑖 − 𝑋𝑖 ̂𝛽 where ̂𝛽 are estimated coefficients of
a linear regression model fit on (𝑋𝑖, 𝑇𝑖). Given the least squares approach, more parametric
assumptions are made than other imputation methods and it is more complex to separate
model fitting from imputation. Hence, this imputation may only be appropriate on a limited
number of data types.

Alternative Methods

Other methods have been proposed for ‘imputing’ censored survival times though with either
less clear discussion or to no benefit. Multiple imputation by chained equations (MICE) has
been demonstrated to perform well with covariate data and even outcome data (in a non-
survival setting). However no adaptations have been developed to incorporate censoring
times into the imputation and therefore is less informative than Gamma imputation.

Re-calibration of censored survival times (Vinzamuri, Li, and Reddy 2017) uses an itera-
tive update procedure to ‘re-calibrate’ censoring times however the motivation behind the
method is not sufficiently clear to be of interest in general survival modelling tasks outside
of the authors’ specific pipelines.

Finally parametric imputation is defined by making random draws from truncated probabil-
ity distributions and adding these to the censoring time (P. Royston 2001; Patrick Royston,
Parmar, and Altman 2008). Whilst this method is arguably the simplest method and will
lead to a sufficiently random sample, i.e. not one skewed by the imputation process, in
practice the randomness leads to unrealistic results, with some imputed times being very
far from the original censoring times and some being very close.

23.0.0.3 The Decision to Impute or Delete

Deletion methods are simple to implement and fast to compute however they can lead to
biasing the data or a significant sample reduction if used incorrectly. Imputation methods
can incorporate tuning and have more relaxed assumptions about the censoring mechanism,
though they may lead to over-confidence in the resulting outcome and therefore add bias into
the dataset. In some cases, the decision to impute or delete is straightforward, for example if
censoring is uninformative and only few observations are censored then complete deletion is
appropriate. If it is unknown if censoring is informative then this can crudely be estimated
by a benchmark experiment. Classification models can be fit on {(𝑋1, Δ1), ..., (𝑋𝑛, Δ𝑛)}
where (𝑋𝑖, Δ𝑖) ∈ 𝒟𝑡𝑟𝑎𝑖𝑛. Whilst not an exact test, if any model significantly outperforms a
baseline, then this may indicate censoring is informative. This is demonstrated in (tab-car-
predcens?), in which a logistic regression outperforms a featureless baseline in correctly
predicting if an observation is censored when censoring is informative, but is no better than
the baseline when censoring is uninformative.

Table 23.1: Estimating censoring dependence by prediction. Sim1 is informative censoring
and Sim7 is uninformative. Logistic regression is compared to a featureless baseline with the
Brier score with standard errors. Censoring can be significantly predicted to 95% confidence
when informative (Sim1) but not when uninformative (Sim7).

Data Baseline Logistic Regression
Sim1 0.20 (0.14, 0.26) 0.02 (0.01, 0.03)
Sim7 0.19 (0.14, 0.24) 0.16 (0.13, 0.19)
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� Get more context

See Chapter 19 for useful context.

� Differences in measures

See Chapter 5 to learn about the differences between survival measures.

� Learn more about the C-index

See Chapter 1 to learn more about the C-index.

� C-index

Read Chapter 1 to learn about the C-index

167





Exercises

TODO (150-200 WORDS)

Page coming soon!

We are working on this page and it will be available soon!

169





References

Aalen, Odd. 1978. “Nonparametric Inference for a Family of Counting Processes.” The
Annals of Statistics 6 (4): 701–26.

Abner, Erin L, Richard J Charnigo, and Richard J Kryscio. 2013. “Markov chains and semi-
Markov models in time-to-event analysis.” Journal of Biometrics & Biostatistics Suppl
1 (e001): 19522. https://doi.org/10.4172/2155-6180.S1-e001.

Akaike, Hirotugu. 1974. “A New Look at the Statistical Model Identification.” IEEE
Transactions on Automatic Control 19 (6): 716–23. https://doi.org/10.1093/ietfec/e90-
a.12.2762.

Akritas, Michael G. 1994. “Nearest Neighbor Estimation of a Bivariate Distribution Un-
der Random Censoring.” Ann. Statist. 22 (3): 1299–1327. https://doi.org/10.1214/aos/
1176325630.

Andres, Axel, Aldo Montano-Loza, Russell Greiner, Max Uhlich, Ping Jin, Bret Hoehn,
David Bigam, James Andrew Mark Shapiro, and Norman Mark Kneteman. 2018. “A
novel learning algorithm to predict individual survival after liver transplantation for
primary sclerosing cholangitis.” PLOS ONE 13 (3): e0193523. https://doi.org/10.1371/
journal.pone.0193523.

Antolini, Laura, Patrizia Boracchi, and Elia Biganzoli. 2005. “A time-dependent dis-
crimination index for survival data.” Statistics in Medicine 24 (24): 3927–44. https:
//doi.org/10.1002/sim.2427.

Avati, Anand, Tony Duan, Sharon Zhou, Kenneth Jung, Nigam H. Shah,
and Andrew Ng. 2020. “Countdown Regression: Sharp and Calibrated Sur-
vival Predictions.” In Proceedings of Machine Learning Research, 145—–155.
https://proceedings.mlr.press/v115/avati20a.html http://arxiv.org/abs/1806.08324.

Bakker, Bart, Tom Heskes, Jan Neijt, and Bert Kappen. 2004. “Improving Cox survival
analysis with a neural-Bayesian approach.” Statistics in Medicine 23 (19): 2989–3012.
https://doi.org/10.1002/sim.1904.

Becker, Marc, Lennart Schneider, and Sebastian Fischer. 2024. “Hyperparameter Opti-
mization.” In Applied Machine Learning Using mlr3 in R, edited by Bernd Bischl,
Raphael Sonabend, Lars Kotthoff, and Michel Lang. CRC Press. https://mlr3book.mlr-
org.com/hyperparameter_optimization.html.

Bello, Ghalib A, Timothy J W Dawes, Jinming Duan, Carlo Biffi, Antonio de Marvao,
Luke S G E Howard, J Simon R Gibbs, et al. 2019. “Deep-learning cardiac motion
analysis for human survival prediction.” Nature Machine Intelligence 1 (2): 95–104. https:
//doi.org/10.1038/s42256-019-0019-2.

Bennett, Steve. 1983. “Analysis of survival data by the proportional odds model.” Statistics
in Medicine 2 (2): 273–77. https://doi.org/https://doi.org/10.1002/sim.4780020223.

Biganzoli, E M, F Ambrogi, and P Boracchi. 2009. “Partial logistic artificial neural networks
(PLANN) for flexible modeling of censored survival data.” In 2009 International Joint
Conference on Neural Networks, 340–46. https://doi.org/10.1109/IJCNN.2009.5178824.

Biganzoli, Elia, Patrizia Boracchi, Luigi Mariani, and Ettore Marubini. 1998. “Feed forward
neural networks for the analysis of censored survival data: a partial logistic regression
approach.” Statistics in Medicine 17 (10): 1169–86. https://doi.org/10.1002/(SICI)1097-

171

https://doi.org/10.4172/2155-6180.S1-e001
https://doi.org/10.1093/ietfec/e90-a.12.2762
https://doi.org/10.1093/ietfec/e90-a.12.2762
https://doi.org/10.1214/aos/1176325630
https://doi.org/10.1214/aos/1176325630
https://doi.org/10.1371/journal.pone.0193523
https://doi.org/10.1371/journal.pone.0193523
https://doi.org/10.1002/sim.2427
https://doi.org/10.1002/sim.2427
https://proceedings.mlr.press/v115/avati20a.html%20http://arxiv.org/abs/1806.08324
https://doi.org/10.1002/sim.1904
https://mlr3book.mlr-org.com/hyperparameter_optimization.html
https://mlr3book.mlr-org.com/hyperparameter_optimization.html
https://doi.org/10.1038/s42256-019-0019-2
https://doi.org/10.1038/s42256-019-0019-2
https://doi.org/10.1002/sim.4780020223
https://doi.org/10.1109/IJCNN.2009.5178824
https://doi.org/10.1002/(SICI)1097-0258(19980530)17:10%3C1169::AID-SIM796%3E3.0.CO;2-D
https://doi.org/10.1002/(SICI)1097-0258(19980530)17:10%3C1169::AID-SIM796%3E3.0.CO;2-D


172 References

0258(19980530)17:10%3C1169::AID-SIM796%3E3.0.CO;2-D.
Binder, Harald, and Martin Schumacher. 2008. “Allowing for mandatory covariates in boost-

ing estimation of sparse high-dimensional survival models.” BMC Bioinformatics 9 (1):
14. https://doi.org/10.1186/1471-2105-9-14.

Binder, Harold. 2013. “CoxBoost: Cox models by likelihood based boosting for a single
survival endpoint or competing risks.” CRAN.

Binder, Martin, Florian Pfisterer, Bernd Bischl, Michel Lang, and Susanne Dandl. 2019.
“mlr3pipelines: Preprocessing Operators and Pipelines for ’mlr3’.” CRAN. https://cran.r-
project.org/package=mlr3pipelines.

Bischl, Bernd, Raphael Sonabend, Lars Kotthoff, and Michel Lang, eds. 2024. Applied Ma-
chine Learning Using mlr3 in R. CRC Press. https://mlr3book.mlr-org.com.

Bishop, Christopher M. 2006. Pattern recognition and machine learning. springer.
Blanche, Paul, Jean-François Dartigues, and Hélène Jacqmin-Gadda. 2013. “Review and

comparison of ROC curve estimators for a time-dependent outcome with marker-
dependent censoring.” Biometrical Journal 55 (5): 687–704. https://doi.org/10.1002/
bimj.201200045.

Blanche, Paul, Aurélien Latouche, and Vivian Viallon. 2012. “Time-dependent AUC with
right-censored data: a survey study,” October. https://doi.org/10.1007/978-1-4614-
8981-8_11.

Bland, J Martin, and Douglas G. Altman. 2004. “The logrank test.” BMJ (Clinical Research
Ed.) 328 (7447): 1073. https://doi.org/10.1136/bmj.328.7447.1073.

Bou-Hamad, Imad, Denis Larocque, and Hatem Ben-Ameur. 2011. “A review of survival
trees.” Statist. Surv. 5: 44–71. https://doi.org/10.1214/09-SS047.

Bower, Hannah, Michael J Crowther, Mark J Rutherford, Therese M.-L. Andersson, Mark
Clements, Xing-Rong Liu, Paul W Dickman, and Paul C Lambert. 2019. “Capturing
simple and complex time-dependent effects using flexible parametric survival models: A
simulation study.” Communications in Statistics - Simulation and Computation, July,
1–17. https://doi.org/10.1080/03610918.2019.1634201.

Breiman, Leo. 1996. “Bagging Predictors.” Machine Learning 24 (2): 123–40. https://doi.
org/10.1023/A:1018054314350.

Breiman, Leo, and Philip Spector. 1992. “Submodel Selection and Evaluation in Regres-
sion. The X-Random Case.” International Statistical Review / Revue Internationale de
Statistique 60 (3): 291–319. https://doi.org/10.2307/1403680.

Brier, Glenn. 1950. “Verification of forecasts expressed in terms of probability.” Monthly
Weather Review 78 (1): 1–3.

Buckley, Jonathan, and Ian James. 1979. “Linear Regression with Censored Data.”
Biometrika 66 (3): 429–36. https://doi.org/10.2307/2335161.

Buhlmann, Peter. 2006. “Boosting for high-dimensional linear models.” Ann. Statist. 34 (2):
559–83. https://doi.org/10.1214/009053606000000092.

Buhlmann, Peter, and Torsten Hothorn. 2007. “Boosting Algorithms: Regularization, Pre-
diction and Model Fitting.” Statist. Sci. 22 (4): 477–505. https://doi.org/10.1214/07-
STS242.

Bühlmann, Peter, and Bin Yu. 2003. “Boosting With the L2 Loss.” Journal of the American
Statistical Association 98 (462): 324–39. https://doi.org/10.1198/016214503000125.

Casalicchio, Giuseppe, and Lukas Burk. 2024. “Evaluation and Benchmarking.” In Applied
Machine Learning Using mlr3 in R, edited by Bernd Bischl, Raphael Sonabend, Lars Kot-
thoff, and Michel Lang. CRC Press. https://mlr3book.mlr-org.com/chapters/chapter3/
evaluation_and_benchmarking.html.

Chambless, Lloyd E, and Guoqing Diao. 2006. “Estimation of time-dependent area under
the ROC curve for long-term risk prediction.” Statistics in Medicine 25 (20): 3474–86.
https://doi.org/10.1002/sim.2299.

https://doi.org/10.1002/(SICI)1097-0258(19980530)17:10%3C1169::AID-SIM796%3E3.0.CO;2-D
https://doi.org/10.1002/(SICI)1097-0258(19980530)17:10%3C1169::AID-SIM796%3E3.0.CO;2-D
https://doi.org/10.1186/1471-2105-9-14
https://cran.r-project.org/package=mlr3pipelines
https://cran.r-project.org/package=mlr3pipelines
https://mlr3book.mlr-org.com
https://doi.org/10.1002/bimj.201200045
https://doi.org/10.1002/bimj.201200045
https://doi.org/10.1007/978-1-4614-8981-8_11
https://doi.org/10.1007/978-1-4614-8981-8_11
https://doi.org/10.1136/bmj.328.7447.1073
https://doi.org/10.1214/09-SS047
https://doi.org/10.1080/03610918.2019.1634201
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.2307/1403680
https://doi.org/10.2307/2335161
https://doi.org/10.1214/009053606000000092
https://doi.org/10.1214/07-STS242
https://doi.org/10.1214/07-STS242
https://doi.org/10.1198/016214503000125
https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html
https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html
https://doi.org/10.1002/sim.2299


References 173

Chen, Tianqi, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, Hyunsu Cho,
Kailong Chen, et al. 2020. “xgboost: Extreme Gradient Boosting.” CRAN. https://cran.
r-project.org/package=xgboost.

Chen, Yen-Chen, Wan-Chi Ke, and Hung-Wen Chiu. 2014. “Risk classification of cancer
survival using ANN with gene expression data from multiple laboratories.” Computers
in Biology and Medicine 48: 1–7. https://doi.org/https://doi.org/10.1016/j.compbiomed.
2014.02.006.

Chen, Yifei, Zhenyu Jia, Dan Mercola, and Xiaohui Xie. 2013. “A Gradient Boosting Al-
gorithm for Survival Analysis via Direct Optimization of Concordance Index.” Edited
by Lev Klebanov. Computational and Mathematical Methods in Medicine 2013: 873595.
https://doi.org/10.1155/2013/873595.

Ching, Travers. 2015. “Cox-Nnet.” https://github.com/lanagarmire/cox-nnet.
Ching, Travers, Xun Zhu, and Lana X Garmire. 2018. “Cox-nnet: An artificial neural net-

work method for prognosis prediction of high-throughput omics data.” PLOS Computa-
tional Biology 14 (4): e1006076. https://doi.org/10.1371/journal.pcbi.1006076.

Choodari-Oskooei, Babak, Patrick Royston, and Mahesh K. B. Parmar. 2012. “A simulation
study of predictive ability measures in a survival model I: Explained variation measures.”
Statistics in Medicine 31 (23): 2627–43. https://doi.org/10.1002/sim.4242.

Ciampi, Antonio, Sheilah A Hogg, Steve McKinney, and Johanne Thiffault. 1988. “REC-
PAM: a computer program for recursive partition and amalgamation for censored sur-
vival data and other situations frequently occurring in biostatistics. I. Methods and
program features.” Computer Methods and Programs in Biomedicine 26 (3): 239–56.
https://doi.org/https://doi.org/10.1016/0169-2607(88)90004-1.

Ciampi, Antonio, Johanne Thiffault, Jean Pierre Nakache, and Bernard Asselain. 1986.
“Stratification by stepwise regression, correspondence analysis and recursive partition:
a comparison of three methods of analysis for survival data with covariates.” Com-
putational Statistics and Data Analysis 4 (3): 185–204. https://doi.org/10.1016/0167-
9473(86)90033-2.

Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter. 2015. “Fast and ac-
curate deep network learning by exponential linear units (elus).” arXiv Preprint
arXiv:1511.07289.

Collett, David. 2014. Modelling Survival Data in Medical Research. 3rd ed. CRC.
Collins, Gary S., Joris A. De Groot, Susan Dutton, Omar Omar, Milensu Shanyinde, Ab-

delouahid Tajar, Merryn Voysey, et al. 2014. “External validation of multivariable pre-
diction models: A systematic review of methodological conduct and reporting.” BMC
Medical Research Methodology 14 (1): 1–11. https://doi.org/10.1186/1471-2288-14-40.

Colosimo, Enrico, Fla´vio Ferreira, Maristela Oliveira, and Cleide Sousa. 2002. “Empiri-
cal comparisons between Kaplan-Meier and Nelson-Aalen survival function estimators.”
Journal of Statistical Computation and Simulation 72 (4): 299–308. https://doi.org/10.
1080/00949650212847.

Cortes, Corinna, and Vladimir Vapnik. 1995. “Support-Vector Networks.” Machine Learning
20: 273–97. https://doi.org/10.1007/BF00994018.

Cox, D. R. 1972. “Regression Models and Life-Tables.” Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 34 (2): 187–220.

———. 1975. “Partial Likelihood.” Biometrika 62 (2): 269–76. https://doi.org/10.1080/
03610910701884021.

Cui, Lei, Hansheng Li, Wenli Hui, Sitong Chen, Lin Yang, Yuxin Kang, Qirong Bo, and
Jun Feng. 2020. “A deep learning-based framework for lung cancer survival analysis
with biomarker interpretation.” BMC Bioinformatics 21 (1): 112. https://doi.org/10.
1186/s12859-020-3431-z.

Data Study Group Team. 2020. “Data Study Group Final Report: Great Ormond Street

https://cran.r-project.org/package=xgboost
https://cran.r-project.org/package=xgboost
https://doi.org/10.1016/j.compbiomed.2014.02.006
https://doi.org/10.1016/j.compbiomed.2014.02.006
https://doi.org/10.1155/2013/873595
https://github.com/lanagarmire/cox-nnet
https://doi.org/10.1371/journal.pcbi.1006076
https://doi.org/10.1002/sim.4242
https://doi.org/10.1016/0169-2607(88)90004-1
https://doi.org/10.1016/0167-9473(86)90033-2
https://doi.org/10.1016/0167-9473(86)90033-2
https://doi.org/10.1186/1471-2288-14-40
https://doi.org/10.1080/00949650212847
https://doi.org/10.1080/00949650212847
https://doi.org/10.1007/BF00994018
https://doi.org/10.1080/03610910701884021
https://doi.org/10.1080/03610910701884021
https://doi.org/10.1186/s12859-020-3431-z
https://doi.org/10.1186/s12859-020-3431-z


174 References

Hospital.” https://doi.org/10.5281/zenodo.3670726.
Dawid, A P. 1984. “Present Position and Potential Developments: Some Personal Views:

Statistical Theory: The Prequential Approach.” Journal of the Royal Statistical Society.
Series A (General) 147 (2): 278–92. https://doi.org/10.2307/2981683.

Dawid, A Philip. 1986. “Probability Forecasting.” Encyclopedia of Statistical Sciences 7:
210—–218.

Dawid, A Philip, and Monica Musio. 2014. “Theory and Applications of Proper Scoring
Rules.” Metron 72 (2): 169–83. https://arxiv.org/abs/arXiv:1401.0398v1.

Demler, Olga V, Nina P Paynter, and Nancy R Cook. 2015. “Tests of calibration and
goodness-of-fit in the survival setting.” Statistics in Medicine 34 (10): 1659–80. https:
//doi.org/10.1002/sim.6428.

Demšar, Janez. 2006. “Statistical comparisons of classifiers over multiple data sets.” Journal
of Machine Learning Research 7 (Jan): 1–30.

Dietterich, Thomas G. 1998. “Approximate Statistical Tests for Comparing Supervised
Classification Learning Algorithms.” Neural Computation 10 (7): 1895–1923. https:
//doi.org/10.1162/089976698300017197.

Du, Xian, and Sumeet Dua. 2011. “Cancer prognosis using support vector regression in
imaging modality.” World Journal of Clinical Oncology 2 (1): 44–49. https://doi.org/10.
5306/wjco.v2.i1.44.

Efron, Bradley. 1988. “Logistic Regression, Survival Analysis, and the Kaplan-Meier Curve.”
Journal of the American Statistical Association 83 (402): 414–25. https://doi.org/10.
2307/2288857.

Evers, Ludger, and Claudia-Martina Messow. 2008. “Sparse kernel methods for high-
dimensional survival data.” Bioinformatics 24 (14): 1632–38.

Faraggi, David, and Richard Simon. 1995. “A neural network model for survival data.”
Statistics in Medicine 14 (1): 73–82. https://doi.org/10.1002/sim.4780140108.

Faraggi, David, R Simon, E Yaskil, and A Kramar. 1997. “Bayesian Neural Network Models
for Censored Data.” Biometrical Journal 39 (5): 519–32. https://doi.org/10.1002/bimj.
4710390502.

Fernández, Tamara, Nicolas Nicolás Rivera, and Yee Whye Teh. 2016. “Gaussian
Processes for Survival Analysis.” In Advances in Neural Information Processing
Systems. Vol. 29. Nips. Curran Associates, Inc. http://arxiv.org/abs/1611.00817
https://proceedings.neurips.cc/paper/2016/file/ef1e491a766ce3127556063d49bc2f98-
Paper.pdf.

Fleming, Thomas R, Judith R O’Fallon, Peter C O’Brien, and David P Harrington. 1980.
“Modified Kolmogorov-Smirnov Test Procedures with Application to Arbitrarily Right-
Censored Data.” Biometrics 36 (4): 607–25. https://doi.org/10.2307/2556114.

Foss, Natalie, and Lars Kotthoff. 2024. “Data and Basic Modeling.” In Applied Machine
Learning Using mlr3 in R, edited by Bernd Bischl, Raphael Sonabend, Lars Kot-
thoff, and Michel Lang. CRC Press. https://mlr3book.mlr-org.com/data_and_basic_
modeling.html.

Fotso, Stephane. 2018. “Deep Neural Networks for Survival Analysis Based on a Multi-
Task Framework.” arXiv Preprint arXiv:1801.05512, January. http://arxiv.org/abs/
1801.05512.

Fouodo, Cesaire J K, I Konig, C Weihs, A Ziegler, and M Wright. 2018. “Support vector
machines for survival analysis with R.” The R Journal 10 (July): 412–23.

Freund, Yoav, and Robert E Schapire. 1996. “Experiments with a new boosting algorithm.”
In. Citeseer.

Friedman, Jerome. 1999. “Stochastic Gradient Boosting.” Computational Statistics & Data
Analysis 38 (March): 367–78. https://doi.org/10.1016/S0167-9473(01)00065-2.

Friedman, Jerome H. 2001. “Greedy Function Approximation: A Gradient Boosting Ma-

https://doi.org/10.5281/zenodo.3670726
https://doi.org/10.2307/2981683
https://arxiv.org/abs/arXiv:1401.0398v1
https://doi.org/10.1002/sim.6428
https://doi.org/10.1002/sim.6428
https://doi.org/10.1162/089976698300017197
https://doi.org/10.1162/089976698300017197
https://doi.org/10.5306/wjco.v2.i1.44
https://doi.org/10.5306/wjco.v2.i1.44
https://doi.org/10.2307/2288857
https://doi.org/10.2307/2288857
https://doi.org/10.1002/sim.4780140108
https://doi.org/10.1002/bimj.4710390502
https://doi.org/10.1002/bimj.4710390502
http://arxiv.org/abs/1611.00817%20https://proceedings.neurips.cc/paper/2016/file/ef1e491a766ce3127556063d49bc2f98-Paper.pdf
http://arxiv.org/abs/1611.00817%20https://proceedings.neurips.cc/paper/2016/file/ef1e491a766ce3127556063d49bc2f98-Paper.pdf
http://arxiv.org/abs/1611.00817%20https://proceedings.neurips.cc/paper/2016/file/ef1e491a766ce3127556063d49bc2f98-Paper.pdf
https://doi.org/10.2307/2556114
https://mlr3book.mlr-org.com/data_and_basic_modeling.html
https://mlr3book.mlr-org.com/data_and_basic_modeling.html
http://arxiv.org/abs/1801.05512
http://arxiv.org/abs/1801.05512
https://doi.org/10.1016/S0167-9473(01)00065-2


References 175

chine.” The Annals of Statistics 29 (5): 1189–1232. http://www.jstor.org/stable/2699986.
Friedman, Michael. 1982. “Piecewise exponential models for survival data with covariates.”

The Annals of Statistics 10 (1): 101–13.
Fritsch, Stefan, Frauke Guenther, and Marvin N. Wright. 2019. “neuralnet: Training of

Neural Networks.” CRAN. https://cran.r-project.org/package=neuralnet.
Gelfand, Alan E, Sujit K Ghosh, Cindy Christiansen, Stephen B Soumerai, and Thomas

J McLaughlin. 2000. “Proportional hazards models: a latent competing risk approach.”
Journal of the Royal Statistical Society: Series C (Applied Statistics) 49 (3): 385–97.
https://doi.org/https://doi.org/10.1111/1467-9876.00199.

Gensheimer, Michael F., and Balasubramanian Narasimhan. 2018. “A Simple Discrete-Time
Survival Model for Neural Networks,” 1–17. https://doi.org/arXiv:1805.00917v3.

Gensheimer, Michael F, and Balasubramanian Narasimhan. 2019. “A scalable discrete-time
survival model for neural networks.” PeerJ 7: e6257.

Georgousopoulou, Ekavi N, Christos Pitsavos, Christos Mary Yannakoulia, and Demos-
thenes B Panagiotakos. 2015. “Comparisons between Survival Models in Predicting Car-
diovascular Disease Events : Application in the ATTICA Study ( 2002-2012 ).” Journal
of Statistics Applications & Probability 4 (2): 203–10.

Gerds, Thomas A, and Martin Schumacher. 2006. “Consistent Estimation of the Expected
Brier Score in General Survival Models with Right-Censored Event Times.” Biometrical
Journal 48 (6): 1029–40. https://doi.org/10.1002/bimj.200610301.

Giunchiglia, Eleonora, Anton Nemchenko, and Mihaela van der Schaar. 2018. “Rnn-surv:
A deep recurrent model for survival analysis.” In International Conference on Artificial
Neural Networks, 23–32. Springer.

Gneiting, Tilmann, and Adrian E Raftery. 2007. “Strictly Proper Scoring Rules, Prediction,
and Estimation.” Journal of the American Statistical Association 102 (477): 359–78.
https://doi.org/10.1198/016214506000001437.

Goli, Shahrbanoo, Hossein Mahjub, Javad Faradmal, Hoda Mashayekhi, and Ali-Reza Solta-
nian. 2016. “Survival Prediction and Feature Selection in Patients with Breast Can-
cer Using Support Vector Regression.” Edited by Francesco Pappalardo. Computational
and Mathematical Methods in Medicine 2016: 2157984. https://doi.org/10.1155/2016/
2157984.

Goli, Shahrbanoo, Hossein Mahjub, Javad Faradmal, and Ali-Reza Soltanian. 2016. “Per-
formance Evaluation of Support Vector Regression Models for Survival Analysis: A Sim-
ulation Study.” International Journal of Advanced Computer Science and Applications
7 (June). https://doi.org/10.14569/IJACSA.2016.070650.

Gompertz, Benjamin. 1825. “On the Nature of the Function Expressive of the Law of Hu-
man Mortality, and on a New Mode of Determining the Value of Life Contingencies.”
Philosophical Transactions of the Royal Society of London 115: 513–83.

Gönen, Mithat, and Glenn Heller. 2005. “Concordance Probability and Discriminatory
Power in Proportional Hazards Regression.” Biometrika 92 (4): 965–70.

Good, I J. 1952. “Rational Decisions.” Journal of the Royal Statistical Society. Series B
(Methodological) 14 (1): 107–14. http://www.jstor.org/stable/2984087.

Gordon, Louis, and Richard A Olshen. 1985. “Tree-structured survival analysis.” Cancer
Treatment Reports 69 (10): 1065–69.

Graf, Erika, Claudia Schmoor, Willi Sauerbrei, and Martin Schumacher. 1999. “Assess-
ment and comparison of prognostic classification schemes for survival data.” Statistics
in Medicine 18 (17-18): 2529–45. https://doi.org/10.1002/(SICI)1097-0258(19990915/
30)18:17/18%3C2529::AID-SIM274%3E3.0.CO;2-5.

Graf, Erika, and Martin Schumacher. 1995. “An Investigation on Measures of Explained
Variation in Survival Analysis.” Journal of the Royal Statistical Society. Series D (The
Statistician) 44 (4): 497–507. https://doi.org/10.2307/2348898.

http://www.jstor.org/stable/2699986
https://cran.r-project.org/package=neuralnet
https://doi.org/10.1111/1467-9876.00199
https://doi.org/arXiv:1805.00917v3
https://doi.org/10.1002/bimj.200610301
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1155/2016/2157984
https://doi.org/10.1155/2016/2157984
https://doi.org/10.14569/IJACSA.2016.070650
http://www.jstor.org/stable/2984087
https://doi.org/10.1002/(SICI)1097-0258(19990915/30)18:17/18%3C2529::AID-SIM274%3E3.0.CO;2-5
https://doi.org/10.1002/(SICI)1097-0258(19990915/30)18:17/18%3C2529::AID-SIM274%3E3.0.CO;2-5
https://doi.org/10.2307/2348898


176 References

Greenwell, Brandon, Bradley Boehmke, Jay Cunningham, and. GBM Developers. 2019.
“gbm: Generalized Boosted Regression Models.” CRAN. https://cran.r-project.org/
package=gbm.

Gressmann, Frithjof, Franz J. Király, Bilal Mateen, and Harald Oberhauser. 2018. “Proba-
bilistic supervised learning.” https://doi.org/10.1002/iub.552.

Habibi, Danial, Mohammad Rafiei, Ali Chehrei, Zahra Shayan, and Soheil Tafaqodi. 2018.
“Comparison of Survival Models for Analyzing Prognostic Factors in Gastric Cancer
Patients.” Asian Pacific Journal of Cancer Prevention : APJCP 19 (3): 749–53. https:
//doi.org/10.22034/APJCP.2018.19.3.749.

Haider, Humza, Bret Hoehn, Sarah Davis, and Russell Greiner. 2020. “Effective ways to
build and evaluate individual survival distributions.” Journal of Machine Learning Re-
search 21 (85): 1–63.

Han, Ilkyu, June Hyuk Kim, Heeseol Park, Han-Soo Kim, and Sung Wook Seo. 2018. “Deep
learning approach for survival prediction for patients with synovial sarcoma.” Tumor
Biology 40 (9): 1010428318799264. https://doi.org/10.1177/1010428318799264.

Harrell, F E Jr, K L Lee, R M Califf, D B Pryor, and R A Rosati. 1984. “Regression
modelling strategies for improved prognostic prediction.” Statistics in Medicine 3 (2):
143–52. https://doi.org/10.1002/sim.4780030207.

Harrell, Frank E., Robert M. Califf, and David B. Pryor. 1982. “Evaluating the yield
of medical tests.” JAMA 247 (18): 2543–46. http://dx.doi.org/10.1001/jama.1982.
03320430047030.

Harrell, Frank E., Kerry L. Lee, and Daniel B. Mark. 1996. “Multivariable Prognostic Mod-
els: Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measur-
ing and Reducing Errors.” Statistics in Medicine 15: 361–87. https://doi.org/10.1002/
0470023678.ch2b(i).

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2001. The Elements of Statistical
Learning. Springer New York Inc.

Heagerty, Patrick J., Thomas Lumley, and Margaret S. Pepe. 2000. “Time-Dependent ROC
Curves for Censored Survival Data and a Diagnostic Marker.” Biometrics 56 (2): 337–44.
https://doi.org/10.1111/j.0006-341X.2000.00337.x.

Heagerty, Patrick J, and Yingye Zheng. 2005. “Survival Model Predictive Accuracy and ROC
Curves.” Biometrics 61 (1): 92–105. https://doi.org/10.1111/j.0006-341X.2005.030814.x.

Henderson, and Velleman. 1981. “Building multiple regression models interactively.” Bio-
metrics 37: 391—–411.

Herrmann, Moritz, Philipp Probst, Roman Hornung, Vindi Jurinovic, and Anne-Laure
Boulesteix. 2021. “Large-scale benchmark study of survival prediction methods us-
ing multi-omics data.” Briefings in Bioinformatics 22 (3). https://doi.org/10.1093/bib/
bbaa167.

Hielscher, Thomas, Manuela Zucknick, Wiebke Werft, and Axel Benner. 2010. “On the
Prognostic Value of Gene Expression Signatures for Censored Data BT - Advances in
Data Analysis, Data Handling and Business Intelligence.” In, edited by Andreas Fink,
Berthold Lausen, Wilfried Seidel, and Alfred Ultsch, 663–73. Berlin, Heidelberg: Springer
Berlin Heidelberg.

Hosmer, David W, and Stanley Lemeshow. 1980. “Goodness of fit tests for the multiple
logistic regression model.” Communications in Statistics-Theory and Methods 9 (10):
1043–69.

Hosmer Jr, David W, Stanley Lemeshow, and Susanne May. 2011. Applied survival analysis:
regression modeling of time-to-event data. Vol. 618. John Wiley & Sons.

Hothorn, Torsten, Peter Buehlmann, Thomas Kneib, Matthias Schmid, and Benjamin
Hofner. 2020. “mboost: Model-Based Boosting.” CRAN. https://cran.r-project.org/
package=mboost.

https://cran.r-project.org/package=gbm
https://cran.r-project.org/package=gbm
https://doi.org/10.1002/iub.552
https://doi.org/10.22034/APJCP.2018.19.3.749
https://doi.org/10.22034/APJCP.2018.19.3.749
https://doi.org/10.1177/1010428318799264
https://doi.org/10.1002/sim.4780030207
http://dx.doi.org/10.1001/jama.1982.03320430047030
http://dx.doi.org/10.1001/jama.1982.03320430047030
https://doi.org/10.1002/0470023678.ch2b(i)
https://doi.org/10.1002/0470023678.ch2b(i)
https://doi.org/10.1111/j.0006-341X.2000.00337.x
https://doi.org/10.1111/j.0006-341X.2005.030814.x
https://doi.org/10.1093/bib/bbaa167
https://doi.org/10.1093/bib/bbaa167
https://cran.r-project.org/package=mboost
https://cran.r-project.org/package=mboost


References 177

Hothorn, Torsten, Peter Bühlmann, Sandrine Dudoit, Annette Molinaro, and Mark J Van
Der Laan. 2005. “Survival ensembles.” Biostatistics 7 (3): 355–73. https://doi.org/10.
1093/biostatistics/kxj011.

Hothorn, Torsten, Kurt Hornik, and Achim Zeileis. 2006. “Unbiased Recursive Partitioning:
A Conditional Inference Framework.” Journal of Computational and Graphical Statistics
15 (3): 651—–674.

Hothorn, Torsten, and Berthold Lausen. 2003. “On the exact distribution of maximally
selected rank statistics.” Computational Statistics & Data Analysis 43 (2): 121–37. https:
//doi.org/10.1016/S0167-9473(02)00225-6.

Hothorn, Torsten, Berthold Lausen, Axel Benner, and Martin Radespiel-Tröger. 2004. “Bag-
ging survival trees.” Statistics in Medicine 23 (1): 77–91. https://doi.org/10.1002/sim.
1593.

Hothorn, Torsten, and Achim Zeileis. 2015. “partykit: A Modular Toolkit for Recursive
Partytioning in R.” Journal of Machine Learning Research 16: 3905–9. http://jmlr.org/
papers/v16/hothorn15a.html.

Huang, Shigao, Jie Yang, Simon Fong, and Qi Zhao. 2020a. “Artificial intelligence in can-
cer diagnosis and prognosis: Opportunities and challenges.” Cancer Letters 471: 61–71.
https://doi.org/https://doi.org/10.1016/j.canlet.2019.12.007.

———. 2020b. “Artificial intelligence in cancer diagnosis and prognosis: Opportunities and
challenges.” Cancer Letters 471: 61–71. https://doi.org/https://doi.org/10.1016/j.canlet.
2019.12.007.

Hung, Hung, and Chin-Tsang Chiang. 2010. “Estimation methods for time-dependent AUC
models with survival data.” The Canadian Journal of Statistics / La Revue Canadienne
de Statistique 38 (1): 8–26. http://www.jstor.org/stable/27805213.

Hurvich, Clifford M, and Chih-Ling Tsai. 1979. “Comparison of Four Tests for Equality
of Survival Curves in the Presence of Stratification and Censoring.” Biometrika 66 (3):
419–28. https://doi.org/10.1093/biomet/76.2.297.

Ishwaran, By Hemant, Udaya B Kogalur, Eugene H Blackstone, and Michael S Lauer. 2008.
“Random survival forests.” The Annals of Statistics 2 (3): 841–60. https://doi.org/10.
1214/08-AOAS169.

Ishwaran, Hemant, Eugene H Blackstone, Claire E Pothier, and Michael S Lauer. 2004.
“Relative Risk Forests for Exercise Heart Rate Recovery as a Predictor of Mortality.”
Journal of the American Statistical Association 99 (467): 591–600. https://doi.org/10.
1198/016214504000000638.

Ishwaran, Hemant, and Udaya B Kogalur. 2018. “randomForestSRC.” https://cran.r-project.
org/package=randomForestSRC.

Jackson, Christopher. 2016. “flexsurv: A Platform for Parametric Survival Modeling in R.”
Journal of Statistical Software 70 (8): 1–33.

Jackson, Dan, Ian R. White, Shaun Seaman, Hannah Evans, Kathy Baisley, and James
Carpenter. 2014. “Relaxing the independent censoring assumption in the Cox propor-
tional hazards model using multiple imputation.” Statistics in Medicine 33 (27): 4681–94.
https://doi.org/10.1002/sim.6274.

Jager, Kitty J, Paul C van Dijk, Carmine Zoccali, and Friedo W Dekker. 2008. “The anal-
ysis of survival data: the Kaplan–Meier method.” Kidney International 74 (5): 560–65.
https://doi.org/https://doi.org/10.1038/ki.2008.217.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An introduction
to statistical learning. Vol. 112. New York: Springer.

Jing, Bingzhong, Tao Zhang, Zixian Wang, Ying Jin, Kuiyuan Liu, Wenze Qiu, Liangru Ke,
et al. 2018. “RankDeepSurv.” https://github.com/sysucc-ailab/RankDeepSurv.

———, et al. 2019. “A deep survival analysis method based on ranking.” Artificial Intel-
ligence in Medicine 98: 1–9. https://doi.org/https://doi.org/10.1016/j.artmed.2019.06.

https://doi.org/10.1093/biostatistics/kxj011
https://doi.org/10.1093/biostatistics/kxj011
https://doi.org/10.1016/S0167-9473(02)00225-6
https://doi.org/10.1016/S0167-9473(02)00225-6
https://doi.org/10.1002/sim.1593
https://doi.org/10.1002/sim.1593
http://jmlr.org/papers/v16/hothorn15a.html
http://jmlr.org/papers/v16/hothorn15a.html
https://doi.org/10.1016/j.canlet.2019.12.007
https://doi.org/10.1016/j.canlet.2019.12.007
https://doi.org/10.1016/j.canlet.2019.12.007
http://www.jstor.org/stable/27805213
https://doi.org/10.1093/biomet/76.2.297
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1198/016214504000000638
https://doi.org/10.1198/016214504000000638
https://cran.r-project.org/package=randomForestSRC
https://cran.r-project.org/package=randomForestSRC
https://doi.org/10.1002/sim.6274
https://doi.org/10.1038/ki.2008.217
https://github.com/sysucc-ailab/RankDeepSurv
https://doi.org/10.1016/j.artmed.2019.06.001


178 References

001.
Johnson, Brent A, and Qi Long. 2011. “Survival ensembles by the sum of pairwise differences

with application to lung cancer microarray studies.” Ann. Appl. Stat. 5 (2A): 1081–101.
https://doi.org/10.1214/10-AOAS426.

Kalbfleisch, J. D., and R. L. Prentice. 1973. “Marginal likelihoods based on Cox’s regression
and life model.” Biometrika 60 (2): 267–78. https://doi.org/10.1093/biomet/60.2.267.

Kalbfleisch, John D, and Ross L Prentice. 2011. The statistical analysis of failure time data.
Vol. 360. John Wiley & Sons.

Kamarudin, Adina Najwa, Trevor Cox, and Ruwanthi Kolamunnage-Dona. 2017. “Time-
dependent ROC curve analysis in medical research: Current methods and applications.”
BMC Medical Research Methodology 17 (1): 1–19. https://doi.org/10.1186/s12874-017-
0332-6.

Katzman, Jared L, Uri Shaham, Alexander Cloninger, Jonathan Bates, Tingting Jiang, and
Yuval Kluger. 2018. “DeepSurv: personalized treatment recommender system using a
Cox proportional hazards deep neural network.” BMC Medical Research Methodology 18
(1): 24. https://doi.org/10.1186/s12874-018-0482-1.

Katzman, Jared, Uri Shaham, Alexander Cloninger, Jonathan Bates, Tingting Jiang, and
Yuval Kluger. 2016. “Deep Survival: A Deep Cox Proportional Hazards Network,” June.

Kent, John T., and John O’Quigley. 1988. “Measures of dependence for censored survival
data.” Biometrika 75 (3): 525–34. https://doi.org/10.1093/biomet/75.3.525.

Khan, Faisal M., and Valentina Bayer Zubek. 2008. “Support vector regression for cen-
sored data (SVRc): A novel tool for survival analysis.” Proceedings - IEEE International
Conference on Data Mining, ICDM, 863–68. https://doi.org/10.1109/ICDM.2008.50.

Kim, Minyoung, and Vladimir Pavlovic. 2018. “Variational Inference for Gaussian Process
Models for Survival Analysis.” UAI, 435–45.

Király, Franz J., Markus Löning, Anthony Blaom, Ahmed Guecioueur, and Raphael Son-
abend. 2021. “Designing Machine Learning Toolboxes: Concepts, Principles and Pat-
terns.” arXiv, January. http://arxiv.org/abs/2101.04938.

Király, Franz J, Bilal Mateen, and Raphael Sonabend. 2018. “NIPS - Not Even Wrong? A
Systematic Review of Empirically Complete Demonstrations of Algorithmic Effective-
ness in the Machine Learning and Artificial Intelligence Literature.” arXiv, December.
http://arxiv.org/abs/1812.07519.

Kirmani, S N U A, and Ramesh C Gupta. 2001. “On the Proportional Odds Model in
Survival Analysis.” Annals of the Institute of Statistical Mathematics 53 (2): 203–16.
https://doi.org/10.1023/A:1012458303498.

Klein, John P, and Melvin L Moeschberger. 2003. Survival analysis: techniques for censored
and truncated data. 2nd ed. Springer Science & Business Media.

Kohavi, Ron. 1995. “A study of cross-validation and bootstrap for accuracy estimation and
model selection.” Ijcai 14 (2): 1137–45.

Korn, Edward L., and Richard Simon. 1990. “Measures of explained variation for survival
data.” Statistics in Medicine 9 (5): 487–503. https://doi.org/10.1002/sim.4780090503.

Korn, Edward L, and Richard Simon. 1991. “Explained Residual Variation, Explained Risk,
and Goodness of Fit.” The American Statistician 45 (3): 201–6. https://doi.org/10.2307/
2684290.

Kvamme, Håvard. 2018. “Pycox.” https://pypi.org/project/pycox/.
Kvamme, Håvard, Ørnulf Borgan, and Ida Scheel. 2019. “Time-to-event prediction with

neural networks and Cox regression.” Journal of Machine Learning Research 20 (129):
1–30.

Land, Walker H, Xingye Qiao, Dan Margolis, and Ron Gottlieb. 2011. “A new tool for sur-
vival analysis: evolutionary programming/evolutionary strategies (EP/ES) support vec-
tor regression hybrid using both censored / non-censored (event) data.” Procedia Com-

https://doi.org/10.1016/j.artmed.2019.06.001
https://doi.org/10.1016/j.artmed.2019.06.001
https://doi.org/10.1214/10-AOAS426
https://doi.org/10.1093/biomet/60.2.267
https://doi.org/10.1186/s12874-017-0332-6
https://doi.org/10.1186/s12874-017-0332-6
https://doi.org/10.1186/s12874-018-0482-1
https://doi.org/10.1093/biomet/75.3.525
https://doi.org/10.1109/ICDM.2008.50
http://arxiv.org/abs/2101.04938
http://arxiv.org/abs/1812.07519
https://doi.org/10.1023/A:1012458303498
https://doi.org/10.1002/sim.4780090503
https://doi.org/10.2307/2684290
https://doi.org/10.2307/2684290
https://pypi.org/project/pycox/


References 179

puter Science 6: 267–72. https://doi.org/https://doi.org/10.1016/j.procs.2011.08.050.
Langford, John, Paul Mineiro, Alina Beygelzimer, and Hal Daume. 2016. “Learning Reduc-

tions that Really Work.” Proceedings of the IEEE 104 (1).
Lao, Jiangwei, Yinsheng Chen, Zhi-Cheng Li, Qihua Li, Ji Zhang, Jing Liu, and Guang-

tao Zhai. 2017. “A Deep Learning-Based Radiomics Model for Prediction of Survival
in Glioblastoma Multiforme.” Scientific Reports 7 (1): 10353. https://doi.org/10.1038/
s41598-017-10649-8.

Lawless, Jerald F, and Yan Yuan. 2010. “Estimation of prediction error for survival models.”
Statistics in Medicine 29 (2): 262–74. https://doi.org/10.1002/sim.3758.

LeBlanc, Michael, and John Crowley. 1992. “Relative Risk Trees for Censored Survival
Data.” Biometrics 48 (2): 411–25. https://doi.org/10.2307/2532300.

———. 1993. “Survival Trees by Goodness of Split.” Journal of the American Statistical
Association 88 (422): 457–67. https://doi.org/10.2307/2290325.

Lee, Changhee, William Zame, Jinsung Yoon, and Mihaela Van der Schaar. 2018. “DeepHit:
A Deep Learning Approach to Survival Analysis With Competing Risks.” Proceedings
of the AAAI Conference on Artificial Intelligence 32 (1). https://doi.org/10.1609/aaai.
v32i1.11842.

Lee, Donald K K, Ningyuan Chen, and Hemant Ishwaran. 2019. “Boosted nonparametric
hazards with time-dependent covariates.” https://arxiv.org/abs/arXiv:1701.07926v6.

Li, Liang, Tom Greene, and Bo Hu. 2018. “A simple method to estimate the time-dependent
receiver operating characteristic curve and the area under the curve with right censored
data.” Statistical Methods in Medical Research 27 (8): 2264–78. https://doi.org/10.1177/
0962280216680239.

Liang, Hua, and Guohua Zou. 2008. “Improved AIC Selection Strategy for Survival Analy-
sis.” Computational Statistics & Data Analysis 52 (5): 2538–48. https://doi.org/10.1016/
j.csda.2007.09.003.

Liestol, Knut, Per Kragh Andersen, and Ulrich Andersen. 1994. “Survival analysis and
neural nets.” Statistics in Medicine 13 (12): 1189–1200. https://doi.org/10.1002/sim.
4780131202.

Lundberg, Scott M, and Su-In Lee. 2017. “A Unified Approach to Interpreting Model Pre-
dictions.” Advances in Neural Information Processing Systems 30.

Lundin, M, J Lundin, H B Burke, S Toikkanen, L Pylkkänen, and H Joensuu. 1999. “Ar-
tificial Neural Networks Applied to Survival Prediction in Breast Cancer.” Oncology 57
(4): 281–86. https://doi.org/10.1159/000012061.

Luxhoj, James T., and Huan Jyh Shyur. 1997. “Comparison of proportional hazards models
and neural networks for reliability estimation.” Journal of Intelligent Manufacturing 8
(3): 227–34. https://doi.org/10.1023/A:1018525308809.

Ma, Shuangge, and Jian Huang. 2006. “Regularized ROC method for disease classification
and biomarker selection with microarray data.” Bioinformatics (Oxford, England) 21
(January): 4356–62. https://doi.org/10.1093/bioinformatics/bti724.

Mani, D R, James Drew, Andrew Betz, and Piew Datta. 1999. “Statistics and data min-
ing techniques for lifetime value modeling.” In Proceedings of the Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 94–103.

Mariani, L, D Coradini, E Biganzoli, P Boracchi, E Marubini, S Pilotti, B Salvadori, et al.
1997. “Prognostic factors for metachronous contralateral breast cancer: A comparison of
the linear Cox regression model and its artificial neural network extension.” Breast Can-
cer Research and Treatment 44 (2): 167–78. https://doi.org/10.1023/A:1005765403093.

Mayr, Andreas, Benjamin Hofner, and Matthias Schmid. 2016. “Boosting the discriminatory
power of sparse survival models via optimization of the concordance index and stability
selection.” BMC Bioinformatics 17 (1): 288. https://doi.org/10.1186/s12859-016-1149-8.

Mayr, Andreas, and Matthias Schmid. 2014. “Boosting the concordance index for survival

https://doi.org/10.1016/j.procs.2011.08.050
https://doi.org/10.1038/s41598-017-10649-8
https://doi.org/10.1038/s41598-017-10649-8
https://doi.org/10.1002/sim.3758
https://doi.org/10.2307/2532300
https://doi.org/10.2307/2290325
https://doi.org/10.1609/aaai.v32i1.11842
https://doi.org/10.1609/aaai.v32i1.11842
https://arxiv.org/abs/arXiv:1701.07926v6
https://doi.org/10.1177/0962280216680239
https://doi.org/10.1177/0962280216680239
https://doi.org/10.1016/j.csda.2007.09.003
https://doi.org/10.1016/j.csda.2007.09.003
https://doi.org/10.1002/sim.4780131202
https://doi.org/10.1002/sim.4780131202
https://doi.org/10.1159/000012061
https://doi.org/10.1023/A:1018525308809
https://doi.org/10.1093/bioinformatics/bti724
https://doi.org/10.1023/A:1005765403093
https://doi.org/10.1186/s12859-016-1149-8


180 References

data–a unified framework to derive and evaluate biomarker combinations.” PloS One 9
(1): e84483–83. https://doi.org/10.1371/journal.pone.0084483.

McKinney, Scott Mayer, Marcin Sieniek, Varun Godbole, Jonathan Godwin, Natasha
Antropova, Hutan Ashrafian, Trevor Back, et al. 2020. “International evaluation of an
AI system for breast cancer screening.” Nature 577 (7788): 89–94. https://doi.org/10.
1038/s41586-019-1799-6.

Meinshausen, Nicolai, and Peter Bühlmann. 2010. “Stability selection.” Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 72 (4): 417–73. https://doi.org/10.
1111/j.1467-9868.2010.00740.x.

Moghimi-dehkordi, Bijan, Azadeh Safaee, Mohamad Amin Pourhoseingholi, Reza Fatemi,
Ziaoddin Tabeie, and Mohammad Reza Zali. 2008. “Statistical Comparison of Survival
Models for Analysis of Cancer Data.” Asian Pacific Journal of Cancer Prevention 9:
417–20.

Molnar, Christoph. 2019. Interpretable Machine Learning. https://christophm.github.io/
interpretable-ml-book/.

Murphy, Allan H. 1973. “A New Vector Partition of the Probability Score.” Journal of
Applied Meteorology and Climatology 12 (4): 595–600. https://doi.org/10.1175/1520-
0450(1973)012%3C0595:ANVPOT%3E2.0.CO;2.

N. Venables, W, and B D. Ripley. 2002. Modern Applied Statistics with S. Springer. http:
//www.stats.ox.ac.uk/pub/MASS4.

Nadeau, Claude, and Yoshua Bengio. 2003. “Inference for the Generalization Error.” Ma-
chine Learning 52 (3): 239–81. https://doi.org/10.1023/A:1024068626366.

Nair, Vinod, and Geoffrey E Hinton. 2010. “Rectified linear units improve restricted boltz-
mann machines.” In Proceedings of the 27th International Conference on Machine Learn-
ing (ICML-10), 807–14.

Nasejje, Justine B, Henry Mwambi, Keertan Dheda, and Maia Lesosky. 2017. “A comparison
of the conditional inference survival forest model to random survival forests based on a
simulation study as well as on two applications with time-to-event data.” BMC Medical
Research Methodology 17 (1): 115. https://doi.org/10.1186/s12874-017-0383-8.

Nelson, Wayne. 1972. “Theory and Applications of Hazard Plotting for Censored Failure
Data.” Technometrics 14 (4): 945–66.

Nezhad, Milad Zafar, Najibesadat Sadati, Kai Yang, and Dongxiao Zhu. 2019. “A Deep
Active Survival Analysis approach for precision treatment recommendations: Application
of prostate cancer.” Expert Systems with Applications 115: 16–26. https://doi.org/https:
//doi.org/10.1016/j.eswa.2018.07.070.

Ng, Ryan, Kathy Kornas, Rinku Sutradhar, Walter P. Wodchis, and Laura C. Rosella.
2018. “The current application of the Royston-Parmar model for prognostic modeling in
health research: a scoping review.” Diagnostic and Prognostic Research 2 (1): 4. https:
//doi.org/10.1186/s41512-018-0026-5.

Oh, Sung Eun, Sung Wook Seo, Min-Gew Choi, Tae Sung Sohn, Jae Moon Bae, and Sung
Kim. 2018. “Prediction of Overall Survival and Novel Classification of Patients with
Gastric Cancer Using the Survival Recurrent Network.” Annals of Surgical Oncology 25
(5): 1153–59. https://doi.org/10.1245/s10434-018-6343-7.

Ohno-Machado, Lucila. 1996. “Medical applications of artificial neural networks: connec-
tionist models of survival.” Stanford University Stanford, Calif.

———. 1997. “A COMPARISON OF COX PROPORTIONAL HAZARDS AND ARTIFI-
CIAL NEURAL NETWORK MODELS FOR MEDICAL PROGNOSIS The theoretical
advantages and disadvantages of using different methods for predicting survival have
seldom been tested in real data sets [ 1 , 2 ]. Althou.” Comput. Biol. Med 27 (1): 55–65.

Patel, Katie, Richard Kay, and Lucy Rowell. 2006. “Comparing proportional hazards and
accelerated failure time models: An application in influenza.” Pharmaceutical Statistics

https://doi.org/10.1371/journal.pone.0084483
https://doi.org/10.1038/s41586-019-1799-6
https://doi.org/10.1038/s41586-019-1799-6
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://www.ncbi.nlm.nih.gov/pubmed/18990013
https://www.ncbi.nlm.nih.gov/pubmed/18990013
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1175/1520-0450(1973)012%3C0595:ANVPOT%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(1973)012%3C0595:ANVPOT%3E2.0.CO;2
http://www.stats.ox.ac.uk/pub/MASS4
http://www.stats.ox.ac.uk/pub/MASS4
https://doi.org/10.1023/A:1024068626366
https://doi.org/10.1186/s12874-017-0383-8
https://doi.org/10.1016/j.eswa.2018.07.070
https://doi.org/10.1016/j.eswa.2018.07.070
https://doi.org/10.1186/s41512-018-0026-5
https://doi.org/10.1186/s41512-018-0026-5
https://doi.org/10.1245/s10434-018-6343-7


References 181

5 (3): 213–24. https://doi.org/10.1002/pst.213.
Peters, Andrea, and Torsten Hothorn. 2019. “ipred: Improved Predictors.” CRAN. https:

//cran.r-project.org/package=ipred.
Pölsterl, Sebastian. 2020. “scikit-survival: A Library for Time-to-Event Analysis Built on

Top of scikit-learn.” Journal of Machine Learning Research 21 (212): 1—–6. http://jmlr.
org/papers/v21/20-729.html.

Puddu, Paolo Emilio, and Alessandro Menotti. 2012. “Artificial neural networks versus
proportional hazards Cox models to predict 45-year all-cause mortality in the Italian
Rural Areas of the Seven Countries Study.” BMC Medical Research Methodology 12 (1):
100. https://doi.org/10.1186/1471-2288-12-100.

Qi, Jiezhi. 2009. “Comparison of Proportional Hazards and Accelerated Failure Time Mod-
els.” PhD thesis.

R., Cox, and Snell J. 1968. “A General Definition of Residuals.” Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 30 (2): 248–75.

Rahman, M. Shafiqur, Gareth Ambler, Babak Choodari-Oskooei, and Rumana Z. Omar.
2017. “Review and evaluation of performance measures for survival prediction models
in external validation settings.” BMC Medical Research Methodology 17 (1): 1–15. https:
//doi.org/10.1186/s12874-017-0336-2.

Rasmussen, C. E., and C. K. I. Williams. 2004. Gaussian processes for machine learning.
Vol. 14. 2. https://doi.org/10.1142/S0129065704001899.

Reid, Nancy. 1994. “A Conversation with Sir David Cox.” Statistical Science 9 (3): 439–55.
https://doi.org/10.1214/aos/1176348654.

Ridgeway, Greg. 1999. “The state of boosting.” Computing Science and Statistics 31: 172—
–181.

Rietschel, Carl, Jinsung Yoon, and Mihaela van der Schaar. 2018. “Feature Selection
for Survival Analysis with Competing Risks using Deep Learning.” arXiv Preprint
arXiv:1811.09317.

Rindt, David, Robert Hu, David Steinsaltz, and Dino Sejdinovic. 2022. “Survival Regression
with Proper Scoring Rules and Monotonic Neural Networks,” March. http://arxiv.org/
abs/2103.14755.

Ripley, Brian D, and Ruth M Ripley. 2001. “Neural networks as statistical methods in
survival analysis.” In Clinical Applications of Artificial Neural Networks, edited by
Richard Dybowski and Vanya Gant, 237–55. Cambridge: Cambridge University Press.
https://doi.org/DOI: 10.1017/CBO9780511543494.011.

Ripley, R M, A L Harris, and L Tarassenko. 1998. “Neural network models for breast
cancer prognosis.” Neural Computing & Applications 7 (4): 367–75. https://doi.org/10.
1007/BF01428127.

Royston, P. 2001. “The Lognormal Distribution as a Model for Survival Time in Cancer,
With an Emphasis on Prognostic Factors.” Statistica Neerlandica 55 (1): 89–104. https:
//doi.org/10.1111/1467-9574.00158.

Royston, Patrick, and Douglas G. Altman. 2013. “External validation of a Cox prognostic
model: Principles and methods.” BMC Medical Research Methodology 13 (1). https://
doi.org/10.1186/1471-2288-13-33.

Royston, Patrick, Mahesh K B Parmar, and Douglas G Altman. 2008. “Visualizing Length
of Survival in Time-to-Event Studies: A Complement to Kaplan–Meier Plots.” JNCI:
Journal of the National Cancer Institute 100 (2): 92–97. https://doi.org/10.1093/jnci/
djm265.

Royston, Patrick, and Mahesh K. B. Parmar. 2002. “Flexible parametric proportional-
hazards and proportional-odds models for censored survival data, with application to
prognostic modelling and estimation of treatment effects.” Statistics in Medicine 21 (15):
2175–97. https://doi.org/10.1002/sim.1203.

https://doi.org/10.1002/pst.213
https://cran.r-project.org/package=ipred
https://cran.r-project.org/package=ipred
http://jmlr.org/papers/v21/20-729.html
http://jmlr.org/papers/v21/20-729.html
https://doi.org/10.1186/1471-2288-12-100
https://doi.org/10.1186/s12874-017-0336-2
https://doi.org/10.1186/s12874-017-0336-2
https://doi.org/10.1142/S0129065704001899
https://doi.org/10.1214/aos/1176348654
http://arxiv.org/abs/2103.14755
http://arxiv.org/abs/2103.14755
https://doi.org/DOI:%2010.1017/CBO9780511543494.011
https://doi.org/10.1007/BF01428127
https://doi.org/10.1007/BF01428127
https://doi.org/10.1111/1467-9574.00158
https://doi.org/10.1111/1467-9574.00158
https://doi.org/10.1186/1471-2288-13-33
https://doi.org/10.1186/1471-2288-13-33
https://doi.org/10.1093/jnci/djm265
https://doi.org/10.1093/jnci/djm265
https://doi.org/10.1002/sim.1203


182 References

Royston, Patrick, and Willi Sauerbrei. 2004. “A new measure of prognostic separation in
survival data.” Statistics in Medicine 23 (5): 723–48. https://doi.org/10.1002/sim.1621.

Sashegyi, Andreas, and David Ferry. 2017. “On the Interpretation of the Hazard Ratio and
Communication of Survival Benefit.” The Oncologist 22 (4): 484–86. https://doi.org/10.
1634/theoncologist.2016-0198.

Saul, Alan D. 2016. “Gaussian Process Based Approaches for Survival Analysis.” University
of Sheffield.

Schemper, Michael, and Robin Henderson. 2000. “Predictive Accuracy and Explained Vari-
ation in Cox Regression.” Biometrics 56: 249–55. https://doi.org/10.1002/sim.1486.

Schmid, Matthias, Thomas Hielscher, Thomas Augustin, and Olaf Gefeller. 2011. “A Robust
Alternative to the Schemper-Henderson Estimator of Prediction Error.” Biometrics 67
(2): 524–35. https://doi.org/10.1111/j.1541-0420.2010.01459.x.

Schmid, Matthias, and Torsten Hothorn. 2008a. “Boosting additive models using
component-wise P-splines.” Computational Statistics & Data Analysis 53 (2): 298–311.

———. 2008b. “Flexible boosting of accelerated failure time models.” BMC Bioinformatics
9 (February): 269. https://doi.org/10.1186/1471-2105-9-269.

Schmid, Matthias, and Sergej Potapov. 2012. “A comparison of estimators to evaluate the
discriminatory power of time-to-event models.” Statistics in Medicine 31 (23): 2588–2609.
https://doi.org/10.1002/sim.5464.

Schwarzer, Guido, Werner Vach, and Martin Schumacher. 2010. “Estimation of prediction
error for survival models.” Statistics in Medicine 29 (2): 262–74. https://doi.org/10.1002/
(SICI)1097-0258(20000229)19:4%3C541::AID-SIM355%3E3.0.CO;2-V.

Segal, Mark Robert. 1988. “Regression Trees for Censored Data.” Biometrics 44 (1): 35—–
47.

Seker, H, M O Odetayo, D Petrovic, R N G Naguib, C Bartoli, L Alasio, M S Lakshmi, G V
Sherbet, and O R Hinton. 2002. “An artificial neural network based feature evaluation
index for the assessment of clinical factors in breast cancer survival analysis.” In IEEE
CCECE2002. Canadian Conference on Electrical and Computer Engineering. Conference
Proceedings (Cat. No.02CH37373), 2:1211–1215 vol.2. https://doi.org/10.1109/CCECE.
2002.1013121.

Seker, Huseyin, Michael O Odetayo, Dobrila Petrovic, Raouf N G Naguib, C Bartoli, L
Alasio, M S Lakshmi, and G V Sherbet. 2002. “Assessment of nodal involvement and
survival analysis in breast cancer patients using image cytometric data: statistical, neural
network and fuzzy approaches.” Anticancer Research 22 (1A): 433–38. http://europepmc.
org/abstract/MED/12017328.

Shiao, Han-Tai, and Vladimir Cherkassky. 2013. “SVM-based approaches for predictive
modeling of survival data.” In Proceedings of the International Conference on Data Min-
ing (DMIN), 1. The Steering Committee of The World Congress in Computer Science,
Computer ….

Shivaswamy, Pannagadatta K., Wei Chu, and Martin Jansche. 2007. “A support vector
approach to censored targets.” In Proceedings - IEEE International Conference on Data
Mining, ICDM, 655–60. https://doi.org/10.1109/ICDM.2007.93.

Sonabend, Raphael. 2020. “survivalmodels: Models for Survival Analysis.” CRAN. https:
//raphaels1.r-universe.dev/ui#package:survivalmodels.

———. 2022. “Scoring rules in survival analysis,” December. http://arxiv.org/abs/2212.
05260.

Sonabend, Raphael Edward Benjamin. 2021. “A Theoretical and Methodological Frame-
work for Machine Learning in Survival Analysis: Enabling Transparent and Accessible
Predictive Modelling on Right-Censored Time-to-Event Data.” PhD, University College
London (UCL). https://discovery.ucl.ac.uk/id/eprint/10129352/.

Sonabend, Raphael, Andreas Bender, and Sebastian Vollmer. 2022. “Avoiding C-hacking

https://doi.org/10.1002/sim.1621
https://doi.org/10.1634/theoncologist.2016-0198
https://doi.org/10.1634/theoncologist.2016-0198
https://doi.org/10.1002/sim.1486
https://doi.org/10.1111/j.1541-0420.2010.01459.x
https://doi.org/10.1186/1471-2105-9-269
https://doi.org/10.1002/sim.5464
https://doi.org/10.1002/(SICI)1097-0258(20000229)19:4%3C541::AID-SIM355%3E3.0.CO;2-V
https://doi.org/10.1002/(SICI)1097-0258(20000229)19:4%3C541::AID-SIM355%3E3.0.CO;2-V
https://doi.org/10.1109/CCECE.2002.1013121
https://doi.org/10.1109/CCECE.2002.1013121
http://europepmc.org/abstract/MED/12017328
http://europepmc.org/abstract/MED/12017328
https://doi.org/10.1109/ICDM.2007.93
https://raphaels1.r-universe.dev/ui#package:survivalmodels
https://raphaels1.r-universe.dev/ui#package:survivalmodels
http://arxiv.org/abs/2212.05260
http://arxiv.org/abs/2212.05260
https://discovery.ucl.ac.uk/id/eprint/10129352/


References 183

when evaluating survival distribution predictions with discrimination measures.”
Edited by Zhiyong Lu. Bioinformatics 38 (17): 4178–84. https://doi.org/10.1093/
bioinformatics/btac451.

Sonabend, Raphael, Franz J Király, Andreas Bender, Bernd Bischl, and Michel
Lang. 2021. “mlr3proba: an R package for machine learning in survival analysis.”
Edited by Jonathan Wren. Bioinformatics 37 (17): 2789–91. https://doi.org/10.1093/
bioinformatics/btab039.

Sonabend, Raphael, Florian Pfisterer, Alan Mishler, Moritz Schauer, Lukas Burk,
Sumantrak Mukherjee, and Sebastian Vollmer. 2022. “Flexible Group Fairness Metrics
for Survival Analysis.” In DSHealth 2022 Workshop on Applied Data Science for Health-
care at KDD2022. http://arxiv.org/abs/2206.03256.

Song, Xiao, and Xiao-Hua Zhou. 2008. “A semiparametric approach for the covariate specific
ROC curve with survival outcome.” Statistica Sinica 18 (July): 947–65.

Spooner, Annette, Emily Chen, Arcot Sowmya, Perminder Sachdev, Nicole A Kochan, Ju-
lian Trollor, and Henry Brodaty. 2020. “A comparison of machine learning methods for
survival analysis of high-dimensional clinical data for dementia prediction.” Scientific
Reports 10 (1): 20410. https://doi.org/10.1038/s41598-020-77220-w.

Spruance, Spotswood L, Julia E Reid, Michael Grace, and Matthew Samore. 2004. “Hazard
ratio in clinical trials.” Antimicrobial Agents and Chemotherapy 48 (8): 2787–92. https:
//doi.org/10.1128/AAC.48.8.2787-2792.2004.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. 2014. “Dropout: a simple way to prevent neural networks from overfitting.” The
Journal of Machine Learning Research 15 (1): 1929–58.

Stasinopoulos, Mikis, Bob Rigby, Vlasios Voudouris, and Daniil Kiose. 2020. “gamlss.add:
Extra Additive Terms for Generalized Additive Models for Location Scale and Shape.”
CRAN. https://cran.r-project.org/package=gamlss.add.

Street, W Nick. 1998. “A Neural Network Model for Prognostic Prediction.” In Proceedings
of the Fifteenth International Conference on Machine Learning. San Francisco.

Therneau, Terry M. 2015. “A Package for Survival Analysis in S.” https://cran.r-project.
org/package=survival.

Therneau, Terry M., and Beth Atkinson. 2019. “rpart: Recursive Partitioning and Regres-
sion Trees.” CRAN.

Therneau, Terry M., and Elizabeth Atkinson. 2020. “Concordance.” https://cran.r-project.
org/web/packages/survival/vignettes/concordance.pdf.

Therneau, Terry M., Patricia M. Grambsch, and Thomas R. Fleming. 1990. “Martingale-
based residuals for survival models.” Biometrika 77 (1): 147–60. https://doi.org/10.1093/
biomet/77.1.147.

Tsoumakas, Grigorios, and Ioannis Katakis. 2007. “Multi-Label Classification: An
Overview.” International Journal of Data Warehousing and Mining 3 (3): 1–13. https:
//doi.org/10.4018/jdwm.2007070101.

Tutz, Gerhard, and Harald Binder. 2007. “Boosting Ridge Regression.” Computational
Statistics & Data Analysis 51 (February): 6044–59. https://doi.org/10.1016/j.csda.2006.
11.041.

Tutz, Gerhard, and Matthias Schmid. 2016. Modeling Discrete Time-to-Event Data.
Springer Series in Statistics. Cham: Springer International Publishing. https://doi.org/
10.1007/978-3-319-28158-2.

Uno, Hajime, Tianxi Cai, Michael J. Pencina, Ralph B. D’Agostino, and L J Wei. 2011.
“On the C-statistics for Evaluating Overall Adequacy of Risk Prediction Procedures
with Censored Survival Data.” Statistics in Medicine 30 (10): 1105–17. https://doi.org/
10.1002/sim.4154.

Uno, Hajime, Tianxi Cai, Lu Tian, and L J Wei. 2007. “Evaluating Prediction Rules for

https://doi.org/10.1093/bioinformatics/btac451
https://doi.org/10.1093/bioinformatics/btac451
https://doi.org/10.1093/bioinformatics/btab039
https://doi.org/10.1093/bioinformatics/btab039
http://arxiv.org/abs/2206.03256
https://doi.org/10.1038/s41598-020-77220-w
https://doi.org/10.1128/AAC.48.8.2787-2792.2004
https://doi.org/10.1128/AAC.48.8.2787-2792.2004
https://cran.r-project.org/package=gamlss.add
https://cran.r-project.org/package=survival
https://cran.r-project.org/package=survival
https://cran.r-project.org/web/packages/survival/vignettes/concordance.pdf
https://cran.r-project.org/web/packages/survival/vignettes/concordance.pdf
https://doi.org/10.1093/biomet/77.1.147
https://doi.org/10.1093/biomet/77.1.147
https://doi.org/10.4018/jdwm.2007070101
https://doi.org/10.4018/jdwm.2007070101
https://doi.org/10.1016/j.csda.2006.11.041
https://doi.org/10.1016/j.csda.2006.11.041
https://doi.org/10.1007/978-3-319-28158-2
https://doi.org/10.1007/978-3-319-28158-2
https://doi.org/10.1002/sim.4154
https://doi.org/10.1002/sim.4154


184 References

t-Year Survivors with Censored Regression Models.” Journal of the American Statistical
Association 102 (478): 527–37. http://www.jstor.org/stable/27639883.

Ushey, Kevin, J J Allaire, and Yuan Tang. 2020. “reticulate: Interface to ’Python’.” CRAN.
https://cran.r-project.org/package=reticulate.

Van Belle, Vanya, Kristiaan Pelckmans, Johan A K Suykens, and Sabine Van Huffel. 2008.
“Survival SVM: a practical scalable algorithm.” In Proceedings of the 16th European
Symposium on Artificial Neural Networks (ESANN), 89–94.

Van Belle, Vanya, Kristiaan Pelckmans, Johan A. K. Suykens, and Sabine Van Huffel. 2007.
“Support Vector Machines for Survival Analysis.” In In Proceedings of the Third Inter-
national Conference on Computational Intelligence in Medicine and Healthcare. 1.

Van Belle, Vanya, Kristiaan Pelckmans, Sabine Van Huffel, and Johan A. K. Suykens.
2011. “Support vector methods for survival analysis: A comparison between ranking
and regression approaches.” Artificial Intelligence in Medicine 53 (2): 107–18. https:
//doi.org/10.1016/j.artmed.2011.06.006.

Van Belle, Vanya, K Pelckmans, Johan A. K. Suykens, and Sabine Van Huffel. 2011. “Learn-
ing Transformation Models for Ranking and Survival Analysis.” Journal of Machine
Learning Research 12: 819–62.

Van Belle, V, K Pelckmans, J A K Suykens, and S Van Huffel. 2010. “Additive survival
least-squares support vector machines.” Statistics in Medicine 29 (2): 296–308. https:
//doi.org/10.1002/sim.3743.

Van Houwelingen, Hans C. 2000. “Validation, calibration, revision and combination of prog-
nostic survival models.” Statistics in Medicine 19 (24): 3401–15. https://doi.org/10.1002/
1097-0258(20001230)19:24%3C3401::AID-SIM554%3E3.0.CO;2-2.

———. 2007. “Dynamic prediction by landmarking in event history analysis.” Scandinavian
Journal of Statistics 34 (1): 70–85. https://doi.org/10.1111/j.1467-9469.2006.00529.x.

Vehtari, Aki, and Heikki Joensuu. 2013. “A Gaussian processes model for survival anal-
ysis with time dependent covariates and interval censoring.” https://users.aalto.fi/$/
sim$ave/VehtariJoensuu_GIST_CT_timing_poster_2013.pdf.

Vinzamuri, Bhanukiran, Yan Li, and Chandan K. Reddy. 2017. “Pre-processing censored
survival data using inverse covariance matrix based calibration.” IEEE Transactions
on Knowledge and Data Engineering 29 (10): 2111–24. https://doi.org/10.1109/TKDE.
2017.2719028.

Vock, David M, Julian Wolfson, Sunayan Bandyopadhyay, Gediminas Adomavicius, Paul E
Johnson, Gabriela Vazquez-Benitez, and Patrick J O’Connor. 2016. “Adapting machine
learning techniques to censored time-to-event health record data: A general-purpose
approach using inverse probability of censoring weighting.” Journal of Biomedical Infor-
matics 61: 119–31. https://doi.org/https://doi.org/10.1016/j.jbi.2016.03.009.

Volinsky, Chris T, and Adrian E Raftery. 2000. “Bayesian Information Criterion for Cen-
sored Survival Models.” International Biometric Society 56 (1): 256–62.

Wang, Hong, and Gang Li. 2017. “A Selective Review on Random Survival Forests for High
Dimensional Data.” Quantitative Bio-Science 36 (2): 85–96. https://doi.org/10.22283/
qbs.2017.36.2.85.

Wang, Ping, Yan Li, and Chandan K. Reddy. 2019. “Machine Learning for Survival Analy-
sis.” ACM Computing Surveys 51 (6): 1–36. https://doi.org/10.1145/3214306.

Wang, Zhu. 2019. “bujar: Buckley-James Regression for Survival Data with High-
Dimensional Covariates.” CRAN. https://cran.r-project.org/package=bujar.

Wang, Zhu, and C Y Wang. 2010. “Buckley-James Boosting for Survival Analysis with
High-Dimensional Biomarker Data.” Statistical Applications in Genetics and Molecular
Biology 9 (1). https://doi.org/https://doi.org/10.2202/1544-6115.1550.

Wei, L J. 1992. “The Accelerated Failure Time Model: A Useful Alternative to the Cox
Regression Model in Survival Analysis.” Statistics in Medicine 11: 1871–79.

http://www.jstor.org/stable/27639883
https://cran.r-project.org/package=reticulate
https://doi.org/10.1016/j.artmed.2011.06.006
https://doi.org/10.1016/j.artmed.2011.06.006
https://doi.org/10.1002/sim.3743
https://doi.org/10.1002/sim.3743
https://doi.org/10.1002/1097-0258(20001230)19:24%3C3401::AID-SIM554%3E3.0.CO;2-2
https://doi.org/10.1002/1097-0258(20001230)19:24%3C3401::AID-SIM554%3E3.0.CO;2-2
https://doi.org/10.1111/j.1467-9469.2006.00529.x
https://users.aalto.fi/$/sim$ave/VehtariJoensuu_GIST_CT_timing_poster_2013.pdf
https://users.aalto.fi/$/sim$ave/VehtariJoensuu_GIST_CT_timing_poster_2013.pdf
https://doi.org/10.1109/TKDE.2017.2719028
https://doi.org/10.1109/TKDE.2017.2719028
https://doi.org/10.1016/j.jbi.2016.03.009
https://doi.org/10.22283/qbs.2017.36.2.85
https://doi.org/10.22283/qbs.2017.36.2.85
https://doi.org/10.1145/3214306
https://cran.r-project.org/package=bujar
https://doi.org/10.2202/1544-6115.1550


References 185

Welchowski, Thomas, and Matthias Schmid. 2019. “discSurv: Discrete Time Survival Anal-
ysis.” CRAN. https://cran.r-project.org/package=discSurv.

Wickham, Hadley. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York. https://ggplot2.tidyverse.org.

Wright, Marvin N., and Andreas Ziegler. 2017. “ranger: A Fast Implementation of Random
Forests for High Dimensional Data in C++ and R.” Journal of Statistical Software 77
(1): 1—–17.

Xiang, Anny, Pablo Lapuerta, Alex Ryutov, Jonathan Buckley, and Stanley Azen. 2000.
“Comparison of the performance of neural network methods and Cox regression for
censored survival data.” Computational Statistics & Data Analysis 34 (2): 243–57.
https://doi.org/https://doi.org/10.1016/S0167-9473(99)00098-5.

Yang, Yanying. 2010. “Neural Network Survival Analysis.” PhD thesis, Universiteit Gent.
Yasodhara, Angeline, Mamatha Bhat, and Anna Goldenberg. 2018. Prediction of New Onset

Diabetes after Liver Transplant.
Zare, Ali, Mostafa Hosseini, Mahmood Mahmoodi, Kazem Mohammad, Hojjat Zeraati, and

Kourosh Holakouie Naieni. 2015. “A Comparison between Accelerated Failure-time and
Cox Proportional Hazard Models in Analyzing the Survival of Gastric Cancer Patients.”
Iranian Journal of Public Health 44 (8): 1095–1102. https://doi.org/10.1007/s00606-006-
0435-8.

Zhang, Yucheng, Edrise M Lobo-Mueller, Paul Karanicolas, Steven Gallinger, Masoom A
Haider, and Farzad Khalvati. 2020. “CNN-based survival model for pancreatic ductal
adenocarcinoma in medical imaging.” BMC Medical Imaging 20 (1): 11. https://doi.org/
10.1186/s12880-020-0418-1.

Zhao, Lili, and Dai Feng. 2020. “Deep Neural Networks for Survival Analysis Using Pseudo
Values.” IEEE Journal of Biomedical and Health Informatics 24 (11): 3308–14. https:
//doi.org/10.1109/JBHI.2020.2980204.

Zhou, Zheng, Elham Rahme, Michal Abrahamowicz, and Louise Pilote. 2005. “Survival
Bias Associated with Time-to-Treatment Initiation in Drug Effectiveness Evaluation: A
Comparison of Methods.” American Journal of Epidemiology 162 (10): 1016–23. https:
//doi.org/10.1093/aje/kwi307.

Zhu, Wan, Longxiang Xie, Jianye Han, and Xiangqian Guo. 2020. “The Application of Deep
Learning in Cancer Prognosis Prediction.” Cancers 12 (3): 603. https://doi.org/10.3390/
cancers12030603.

Zhu, X, J Yao, and J Huang. 2016. “Deep convolutional neural network for survival analysis
with pathological images.” In 2016 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), 544–47. https://doi.org/10.1109/BIBM.2016.7822579.

https://cran.r-project.org/package=discSurv
https://ggplot2.tidyverse.org
https://doi.org/10.1016/S0167-9473(99)00098-5
https://doi.org/10.1007/s00606-006-0435-8
https://doi.org/10.1007/s00606-006-0435-8
https://doi.org/10.1186/s12880-020-0418-1
https://doi.org/10.1186/s12880-020-0418-1
https://doi.org/10.1109/JBHI.2020.2980204
https://doi.org/10.1109/JBHI.2020.2980204
https://doi.org/10.1093/aje/kwi307
https://doi.org/10.1093/aje/kwi307
https://doi.org/10.3390/cancers12030603
https://doi.org/10.3390/cancers12030603
https://doi.org/10.1109/BIBM.2016.7822579


Index

ggplot2, 147
discSurv, 141, 148
mlr3pipelines, 148
mlr3proba, 131, 136, 148
renv, 5

186


	Getting Started
	Preface
	Authors
	Symbols and Notation
	Symbols and Notation
	Introduction
	Why is this book needed?
	Reproducibility

	I Survival Analysis and Machine Learning
	MLSA From Start to Finish
	Statistical Learning
	Machine Learning
	Terminology and Methods
	Machine Learning in Classification and Regression
	Classification
	Regression



	Survival Analysis
	Survival Analysis
	Survival Data and Definitions
	Censoring

	Book Scope
	Survival Prediction Problems
	Survival Analysis Task


	II Evaluation
	What are Survival Measures?
	Survival Measures
	How are Models Evaluated?

	Discrimination Measures
	Time-Independent Measures
	Concordance Indices
	Choosing a C-index

	Time-Dependent Measures
	Concordance Indices
	Area Under the Curve


	Calibration Measures
	Point Calibration
	Calibration by Reduction
	Houwelingen's \alpha

	Probabilistic Calibration
	Kaplan-Meier Comparison
	D-Calibration


	Evaluating Distributions by Scoring Rules
	Classification Losses
	Survival Losses
	Integrated Graf Score
	Integrated Survival Log Loss
	Survival density log loss
	Right-censored log loss
	Absolute Survival Loss

	Prediction Error Curves
	Baselines and ERV

	Evaluating Survival Time
	Distance measures
	Over- and under-predictions

	Choosing Measures
	Defining the experiment
	Predictive experiments
	Benchmark experiments
	Investigation

	Conclusions


	III Models
	Classical Models
	A Review of Classical Survival Models
	Non-Parametric Distribution Estimators
	Continuous Ranking and Semi-Parametric Models: Cox PH
	Conditional Distribution Predictions: Parametric Linear Models


	Machine Learning Survival Models
	A Survey of Machine Learning Models for Survival Analysis

	Tree-Based Methods
	Random Forests
	Random Forests for Regression
	Random Forests for Survival Analysis
	Splitting Rules
	Terminal Node Prediction

	Conclusions


	Support Vector Machines
	SVMs for Regression
	SVMs for Survival Analysis
	SSVM-Hybrid {.unnumbered .unlisted}
	SSVM-Rank {.unnumbered .unlisted}

	Conclusions

	Boosting Methods
	Gradient Boosting Machines
	Gradient Boosting Machines for Regression
	Losses and Learners
	Hyper-Parameters

	Gradient Boosting Machines for Survival Analysis
	Cox Survival Models
	Ranking Survival Models

	Conclusions


	Neural Networks
	Neural Networks
	Neural Networks for Regression
	Neural Networks for Survival Analysis
	Probabilistic Survival Models
	Deterministic Survival Models

	Conclusions


	Alternative Methods
	Choosing Models

	IV Reduction Techniques
	Reductions
	Representing Pipelines
	Introduction to Composition
	Taxonomy of Compositors
	Motivation for Composition

	Introduction to Reduction
	Reduction Motivation
	Task, Loss, and Data Reduction
	Common Mistakes in Implementation of Reduction

	Composition Strategies for Survival Analysis
	C1) Linear Predictor \rightarrow Distribution
	C2) Survival Time \rightarrow Distribution
	C3) Distribution \rightarrow Survival Time Composition
	C4) Survival Model Averaging

	Novel Survival Reductions
	R7-R8) Survival \rightarrow Probabilistic Classification
	Composition: Binning Survival Times
	Composition: Survival to Classification Outcome
	Reduction to Classification Bias
	Multi-Label Classification Algorithms
	Censoring in Classification
	R7) Probabilistic Survival \rightarrow Probabilistic Classification
	R8) Deterministic Survival \rightarrow Probabilistic Classification


	Conclusions

	Competing Risks Pipelines
	Discrete Time Survival Analysis
	Connections to Poisson Regression and Processes
	Connections to Regression and Imputation
	Deletion #{sec-redux-regr-del}
	Imputation
	The Decision to Impute or Delete

	Advanced Methods

	V Extensions and Outlook
	Common problems in survival analysis
	Evaluation and prediction

	Survival Software
	What's next for MLSA?

	Exercises
	Exercises
	References
	References
	Index

